Math, asked by arnav2502, 1 year ago

Write the biography of Srinivasa ramanujan

Answers

Answered by yxngzy15
13

Srinivasa Ramanujan was born in southern India in 1887. After demonstrating an intuitive grasp of mathematics at a young age, he began to develop his own theories and in 1911 published his first paper in India. Two years later Ramanujan began a correspondence with British mathematician G. H. Hardy that resulted in a five-year-long mentorship for Ramanujan at Cambridge, where he published numerous papers on his work and received a B.S. for research. His early work focused on infinite series and integrals, which extended into the remainder of his career. After contracting tuberculosis, Ramanujan returned to India, where he died in 1920 at 32 years of age.

Answered by satuu43
19
Srinivasa Ramanujan was a mathematical genius who made numerous contributions in the field, namely in number theory. The importance of his research continues to be studied and inspires mathematicians today.

Synopsis

Srinivasa Ramanujan was born in southern India in 1887. After demonstrating an intuitive grasp of mathematics at a young age, he began to develop his own theories and in 1911 published his first paper in India. Two years later Ramanujan began a correspondence with British mathematician G. H. Hardy that resulted in a five-year-long mentorship for Ramanujan at Cambridge, where he published numerous papers on his work and received a B.S. for research. His early work focused on infinite series and integrals, which extended into the remainder of his career. After contracting tuberculosis, Ramanujan returned to India, where he died in 1920 at 32 years of age.

Intuition

Srinivasa Ramanujan was born on December 22, 1887, in Erode, India, a small village in the southern part of the country. Shortly after this birth, his family moved to Kumbakonam, where his father worked as a clerk in a cloth shop. Ramanujan attended the local grammar school and high school, and early on demonstrated an affinity for mathematics.

When at age 15 he obtained an out-of-date book called A Synopsis of Elementary Results in Pure and Applied Mathematics, Ramanujan set about feverishly and obsessively studying its thousands of theorems before moving on to formulate many of his own. At the end of high school, the strength of his schoolwork was such that he obtained a scholarship to the Government College in Kumbakonam.

A Blessing and a Curse

But Ramanujan’s greatest asset proved also to be his Achilles heel. He lost his scholarship to both the Government College and later at the University of Madras because his devotion to math caused him to let his other courses fall by the wayside. With little in the way of prospects, in 1909 he sought government unemployment benefits.

Yet despite these setbacks, Ramanujan continued to make strides in his mathematical work, and in 1911 published a 17-page paper on Bernoulli numbers in the Journal of the Indian Mathematical Society. Seeking the help of members of the society, in 1912 Ramanujan was able to secure a low-level post as a shipping clerk with the Madras Port Trust, where he was able to make a living while building a reputation for himself as a gifted mathematician.


Doing the Math

"[Ramanujan] made many momentous contributions to mathematics especially number theory," states George E. Andrews, an Evan Pugh Professor of Mathematics at Pennsylvania State University. "Much of his work was done jointly with his benefactor and mentor, G. H. Hardy. Together they began the powerful "circle method" to provide an exact formula for p(n), the number of integer partitions of n. (e.g. p(5)=7 where the seven partitions are 5, 4+1, 3+2, 3+1+1, 2+2+1, 2+1+1+1, 1+1+1+1+1). The circle method has played a major role in subsequent developments in analytic number theory. Ramanujan also discovered and proved that 5 always divides p(5n+4), 7 always divides p(7n+5) and 11 always divides p(11n+6). This discovery led to extensive advances in the theory of modular forms."

Bruce C. Berndt, Professor of Mathematics at the University of Illinois at Urbana-Champaign, adds that: "the theory of modular forms is where Ramanujan's ideas have been most influential. In the last year of his life, Ramanujan devoted much of his failing energy to a new kind of function called mock theta functions. Although after many years we can prove the claims that Ramanujan made, we are far from understanding how Ramanujan thought about them, and much work needs to be done. They also have many applications. For example, they have applications to the theory of black holes in physics."


satuu43: If it helps you then PLEASE mark it as brainliest answer
satuu43: thnx
Similar questions