Biology, asked by gungun2712, 9 months ago

Write your role as a future to climatic changes

Answers

Answered by jlvsbhumika
1

Answer:

Climate change occurs when changes in Earth's climate system result in new weather patterns that last for at least a few decades, and maybe for millions of years. The climate system comprises five interacting parts, the atmosphere (air), hydrosphere (water), cryosphere (ice and permafrost), biosphere (living things), and lithosphere (earth's crust and upper mantle). The climate system receives nearly all of its energy from the sun, with a relatively tiny amount from earth's interior. The climate system also gives off energy to outer space. The balance of incoming and outgoing energy, and the passage of the energy through the climate system, determines Earth's energy budget. When the incoming energy is greater than the outgoing energy, earth's energy budget is positive and the climate system is warming. If more energy goes out, the energy budget is negative and earth experiences cooling.

As this energy moves through Earth's climate system, it creates Earth's weather and long-term averages of weather are called "climate". Changes in the long term average are called "climate change". Such changes can be the result of "internal variability", when natural processes inherent to the various parts of the climate system alter Earth's energy budget. Examples include cyclical ocean patterns such as the well-known El Niño–Southern Oscillation and less familiar Pacific decadal oscillation and Atlantic multidecadal oscillation. Climate change can also result from "external forcing", when events outside of the climate system's five parts nonetheless produce changes within the system. Examples include changes in solar output and volcanism.

Answered by awesomeamritaa497
0

role as a future to climatic changes

The nature of the potential impacts of climate change increases as a function of the sensitivity of the climate model. If globally-averaged temperature increases approach 3°C (5.4°F) in response to doubling of carbon dioxide, they are likely to have substantial impacts on human endeavors and on natural ecosystems.

Given the fact that middle and high latitude regions appear to be more sensitive to climate change than other regions, significant impacts in these regions are likely to occur at lower levels of global warming.

There could be significant regional impacts over the full range of IPCC model-based projections.

Natural ecosystems are less able to adapt to change than are human systems.

In summary, critical factors in defining a “safe” concentration depend on the nature and level of societal vulnerability, the degree of risk aversion, ability and/or costs of adaptation and/or mitigation, and the valuation of ecosystems, as well as on the sensitivity of the Earth system to climate change.

Similar questions