Math, asked by XxHappySmilexX, 5 months ago

wrong answers will be reported....!!!!!​

Attachments:

Answers

Answered by Arceus02
4

Given:-

  •  \sf2 log_{1 0 }(x)  +  \dfrac{1}{2}  log_{10}(y)  = 1

To express:-

  • y in terms of x

Answer:-

Given that,

 \sf2 log_{1 0 }(x)  +  \dfrac{1}{2}  log_{10}(y)  = 1

{\red{\bigstar}} \boxed{\sf{alog_b(c) = log_b(c)^a}}

  \sf \: \longrightarrow log_{10}( {x}^{2} )  +  log_{10}(  {y}^{ 1/2}  )  = 1

  \sf \: \longrightarrow log_{10}( {x}^{2} )  +  log_{10}( \sqrt{y} )  = 1

{\blue{\bigstar}} \boxed{\sf{log_b(a) + log_b(c) = log_b(ac)}}

\sf \longrightarrow log_{10}( {x}^{2} \sqrt{y}  )  = 1

Writing this in exponential form,

\sf \longrightarrow {x}^{2}  \sqrt{y}  =  10

\sf \longrightarrow \sqrt{y}  =  \dfrac{10}{ {x}^{2} }

Squaring both sides

\sf \longrightarrow \underline{ \underline{ \sf{ \green{y =  \dfrac{100}{ {x}^{4} } }}}}

Answered by singhamanpratap0249
10

Answer:

Given that,

\sf2 log_{1 0 }(x) + \dfrac{1}{2} log_{10}(y) = 12log

10

(x)+

2

1

log

10

(y)=1

{\red{\bigstar}} \boxed{\sf{alog_b(c) = log_b(c)^a}}★

alog

b

(c)=log

b

(c)

a

\sf \: \longrightarrow log_{10}( {x}^{2} ) + log_{10}( {y}^{ 1/2} ) = 1⟶log

10

(x

2

)+log

10

(y

1/2

)=1

\sf \: \longrightarrow log_{10}( {x}^{2} ) + log_{10}( \sqrt{y} ) = 1⟶log

10

(x

2

)+log

10

(

y

)=1

{\blue{\bigstar}} \boxed{\sf{log_b(a) + log_b(c) = log_b(ac)}}★

log

b

(a)+log

b

(c)=log

b

(ac)

\sf \longrightarrow log_{10}( {x}^{2} \sqrt{y} ) = 1⟶log

10

(x

2

y

)=1

Writing this in exponential form,

\sf \longrightarrow {x}^{2} \sqrt{y} = 10⟶x

2

y

=10

\sf \longrightarrow \sqrt{y} = \dfrac{10}{ {x}^{2} }⟶

y

=

x

2

10

Squaring both sides

\sf \longrightarrow \underline{ \underline{ \sf{ \green{y = \dfrac{100}{ {x}^{4} } }}}}⟶

y=

x

4

100

Similar questions