wrong answers will be reported....!!!!!
Answers
Given:-
To express:-
- y in terms of x
Answer:-
Given that,
Writing this in exponential form,
Squaring both sides
Answer:
Given that,
\sf2 log_{1 0 }(x) + \dfrac{1}{2} log_{10}(y) = 12log
10
(x)+
2
1
log
10
(y)=1
{\red{\bigstar}} \boxed{\sf{alog_b(c) = log_b(c)^a}}★
alog
b
(c)=log
b
(c)
a
\sf \: \longrightarrow log_{10}( {x}^{2} ) + log_{10}( {y}^{ 1/2} ) = 1⟶log
10
(x
2
)+log
10
(y
1/2
)=1
\sf \: \longrightarrow log_{10}( {x}^{2} ) + log_{10}( \sqrt{y} ) = 1⟶log
10
(x
2
)+log
10
(
y
)=1
{\blue{\bigstar}} \boxed{\sf{log_b(a) + log_b(c) = log_b(ac)}}★
log
b
(a)+log
b
(c)=log
b
(ac)
\sf \longrightarrow log_{10}( {x}^{2} \sqrt{y} ) = 1⟶log
10
(x
2
y
)=1
Writing this in exponential form,
\sf \longrightarrow {x}^{2} \sqrt{y} = 10⟶x
2
y
=10
\sf \longrightarrow \sqrt{y} = \dfrac{10}{ {x}^{2} }⟶
y
=
x
2
10
Squaring both sides
\sf \longrightarrow \underline{ \underline{ \sf{ \green{y = \dfrac{100}{ {x}^{4} } }}}}⟶
y=
x
4
100