Math, asked by abhirup24kundu, 11 months ago

x+1/x =14 then x√x-14 = ?​

Answers

Answered by mah45
0

Answer:

-2√2

Step-by-step explanation:

m-1/m ko solve karke m ki value place kar

Answered by jitumahi435
2

Given:

x+\dfrac{1}{x} = 14

We have to find, \sqrt{x} +\dfrac{1}{\sqrt{x} } -4 = ?

Solution:

x+\dfrac{1}{x} = 14

(\sqrt{x})^2 +(\dfrac{1}{\sqrt{x} } )^2 = 14

Using the algebraic identity:

(a+b)^{2}= a^{2} +b^{2} + 2ab

a^{2} +b^{2} = (a+b)^{2} - 2ab

(\sqrt{x} +\dfrac{1}{\sqrt{x} })^2-2(\sqrt{x} )(\dfrac{1}{\sqrt{x} }) = 14

(\sqrt{x} +\dfrac{1}{\sqrt{x} })^2- 2 = 14

(\sqrt{x} +\dfrac{1}{\sqrt{x} })^2 = 14 + 2

(\sqrt{x} +\dfrac{1}{\sqrt{x} })^2 = 16

(\sqrt{x} +\dfrac{1}{\sqrt{x} })^2 = 4^2

\sqrt{x} +\dfrac{1}{\sqrt{x} } = 4

Subtracting both sides by 4, we get

\sqrt{x} +\dfrac{1}{\sqrt{x} }  - 4 = 4 - 4

\sqrt{x} +\dfrac{1}{\sqrt{x} }  - 4 = 0

\sqrt{x} +\dfrac{1}{\sqrt{x} }  - 4 = 0

Thus, if x+\dfrac{1}{x} = 14, then \sqrt{x} +\dfrac{1}{\sqrt{x} }  - 4 = 0.

Similar questions