Math, asked by alphyd, 1 year ago

X = 2 + √ 3

Find x ³ + 1/x³

Answers

Answered by BrainlyQueen01
12

Hi there !


_______________________


Given :


x = 2 + \sqrt{3}


To find ;


x {}^{3} + \frac{1}{x {}^{3} }


Solution :


x = 2 + \sqrt{3} \\ \\ \frac{1}{x} = \frac{1}{2 + \sqrt{3} } \times \frac{2 - \sqrt{3} }{2 - \sqrt{3} } \\ \\ \frac{1}{x} = \frac{2 - \sqrt{3} }{(2) {}^{2} - (\sqrt{3} ) {}^{2} } \\ \\ \frac{1}{x} = \frac{2 - \sqrt{3} }{4 - 3} \\ \\ \frac{1}{x} = 2 - \sqrt{3}


Now,


x + \frac{1}{x} \\ \\ \implies2 + \cancel{\sqrt{3}}+ 2 - \cancel {\sqrt{3}} \\ \\ \implies2 + 2 \\ \\ \implies4


So, on cubing both sides, we have


(x + \frac{1}{x} ) {}^{3} = (4){}^{3} \\ \\ x{}^{3} + \frac{1}{x{}^{3}} + 3(x + \frac{1}{x} ) = 64 \\ \\ x{}^{3} + \frac{1}{x{}^{3}} +3 \times 4 = 64 \\ \\ x{}^{3} + \frac{1}{x{}^{3}} +12 = 64 \\ \\ x{}^{3} + \frac{1}{x{}^{3}} = 64 - 12 \\ \\ x{}^{3} + \frac{1}{x{}^{3}} = 64 - 12 \\ \\ \boxed{ \bold{ x{}^{3} + \frac{1}{x{}^{3}} = 52}}


_______________________


Thanks for the question !


☺️❤️☺️

Answered by mehul1045
0
x = 2 + ∫3  , 1/x = 2-∫3  

So, x + 1/x = 4

(x+1/x)3  =  43 

x3 + 1/x3 + 3x + 1/x = 64

x3 + 1/x3 + 3 = 64 

x3 + 1/x3 =  64 – 3 = 61


alphyd: 52 is the answer
alphyd: wrong answer
Similar questions