X^2+xy+y^2=37 and 3xy+2y^2=68
Answers
Given : x² + xy + y² = 37 , 3xy + 2y² = 68
To find : Integral Solution
Solution:
x² + xy + y² = 37
3xy + 2y² = 68
x² + xy + y² = 37
=> (x - y)² + 3xy = 37
=> 3xy ≤ 37
xy ≤ 12
(x - y)² = 0 => 3xy = 37 ( no integral solutions)
(x - y)² = 1 => 3xy = 36 => xy = 12
Possible solution
-3 , - 4 or 3 , 4
3xy + 2y² = 68 is also satisfied
(x - y)² = 4 => 3xy = 33 => xy = 11
1 , 11 does not satisfy (x - y)² = 4
no possible solution
(x - y)² = 9 => 3xy = 28 ( no integral solutions)=> xy = 11
(x - y)² = 16 => 3xy = 21 => xy = 7
1 , 7 does not satisfy (x - y)² = 16
no possible solution
(x - y)² = 25 => 3xy = 12 => xy = 4
1, 4 or 2 ,2 Does not satisfy (x - y)² = 25
(x - y)² = 36 => 3xy = 1 ( no integral solutions)
Hence only integral solution
(3 , 4) or (-3 , -4 )
3² + (3)(4) + 4² = 37
3(3)(4) + 2(4)² = 68
Learn more:
Find the number of ordered pairs of positive integers (x y) that satisfy ...
https://brainly.in/question/18702968
Verify x+(y+z)=(x+y)+z for the following values of x,y,z
https://brainly.in/question/9366246