Math, asked by AshStyles, 1 year ago

x^2+y^2 = 13 and xy= 6 find x^3+y^3

Answers

Answered by Anonymous
14

x²+y²=13

(x+y)²=x²+y²+2xy

(x+y)²=13+12

(x+y)²=25

x+y=5


(x+y)³=x³+y³+3xy(x+y)

125=x³+y³+3(6)(5)

125=x³+y³+90

x³+y³=35


Hope it helps


Anonymous: Thanks for marking as the brainlest
AshStyles: Your Welcome
Rooswelt: maderchod
Rooswelt: sorry
Answered by Anonymous
23

Answer :

x³ + y³ = 35

Explanation :

Given,

 \sf \:  {x}^{2}  +  {y}^{2}  =  13 \: and \: xy = 6

To finD

 \sf \:  {x}^{3}  +  {y}^{3}

Firstly,we would need to find the value of x + y

Here,

 \sf(x + y) {}^{2}  =  {x}^{2}  +  {y}^{2} + 2xy \\  \\  \longmapsto \:  \sf \:  {(x + y)}^{2}   = 13 + 2(6) \\  \\  \longmapsto \:  \sf \:  {(x + y)}^{2}  = 25 \\  \\  \longmapsto \:  \boxed{ \sf{x + y = 5}}

Now,

 \sf \:  {(x + y)}^{3}  =  {x}^{3}  +  {y}^{3} + 3xy(x + y) \\  \\  \longmapsto \:  \sf \:  {5}^{3}   =  {x}^{3}  + y {}^{3}  + 3(6)(5) \\  \\  \longmapsto \sf 125 =  {x}^{3}  +  {y}^{3}  + 90 \\  \\  \longmapsto \:   \boxed{\sf { {x}^{3}  +  {y}^{3} =  35 }}

Similar questions