x^2+y^2+z^2-xy-yz-zx=0 and find x+y/z
Answers
Answered by
1
Given, x^2+y^2+z^2-xy-yz-zx=0 can be written as
= 2(x^2+y^2+z^2-xy-yz-zx) = 2 * 0
= 2x^2 + 2y^2 + 2z^2 - 2xy - 2yz - 2zx = 0
= x^2 + x^2 + y^2 + y^2 + z^2 + z^2 - 2xy - 2yz - 2zx = 0
= x^2 + y^2 - 2xy + y^2 + z^2 - 2yz + z^2 + x^2 - 2xz = 0
We know that (a-b)^2 = a^2 + b^2 - 2ab
= (x-y)^2+(y-z)^2+(z-x)^2=0
= x - y=0, y - z=0, z - x=0
= x = y, y = z, z = x
Let x = y = z = a
So, (x+y)/z = (a+a)/a
= 2a/a
= 2.
Hope this helps!
= 2(x^2+y^2+z^2-xy-yz-zx) = 2 * 0
= 2x^2 + 2y^2 + 2z^2 - 2xy - 2yz - 2zx = 0
= x^2 + x^2 + y^2 + y^2 + z^2 + z^2 - 2xy - 2yz - 2zx = 0
= x^2 + y^2 - 2xy + y^2 + z^2 - 2yz + z^2 + x^2 - 2xz = 0
We know that (a-b)^2 = a^2 + b^2 - 2ab
= (x-y)^2+(y-z)^2+(z-x)^2=0
= x - y=0, y - z=0, z - x=0
= x = y, y = z, z = x
Let x = y = z = a
So, (x+y)/z = (a+a)/a
= 2a/a
= 2.
Hope this helps!
Similar questions