Math, asked by rupalsharma4u, 11 months ago

(x+2y)(x²-2xy +4y²)by using suitable identity​

Answers

Answered by MoodyCloud
27

By using identity,

 {a}^{3}  +  {b}^{3}  = (a + b)( {a}^{2}   - ab +  {b}^{2} )

So ATQ,

  -&gt; (x + 2y)( {x}^{2}  - 2xy + 4 {y}^{2} ) \\  \\  -&gt; x( {x}^{2}  - 2xy + 4 {y}^{2} ) + 2y({x}^{2}  - 2xy + 4 {y}^{2} ) \\  \\  -&gt;  {x}^{3}  - 2 {x}^{2} y + 4 {y}^{2} x + 2y {x}^{2}  - 4x  {y}^{2}   + 8 {y}^{3}  \\  \\  -&gt;  {x}^{3}  - 2y {x}^{2}  + 2y {x}^{2}  + 4 {y}^{2} x - 4x {y}^{2}  + 8 {y}^{3}  \\  \\ now \\  \\  - 2 {x}^{2} y + 2y {x}^{2} get \: cancelled \: and \:  + 4 {y}^{2} x - 4 {y}^{2} x \: are \: also \: get \: cancelled \: so \: our \: answer \: is \:  \\  \\ </h3><h2>= {x}^{3}  +  {(2y)}^{3}

Answered by Anonymous
7

Hi friend!!

Given,

(x+2y)(x²-2xy+4y²)

=(x+2y)(x²-(x)(2y)+(2y)²)

We know that (a+b)(a²+b²-ab)=a³+b³

=x³+(2y)³

=x³+8y³

I hope this will help you ;)

Similar questions