Math, asked by anitasingh962, 1 year ago

x / (-3/2)^-3=(-8/27)^-2

Answers

Answered by DerrickStalvey
1

Please find the attached image of the solution.

Attachments:
Answered by Inflameroftheancient
5
Hey there!

Here's the detailed process of my calculations:

Given equation:

\bf{\mathsf{\frac{x}{(\frac{- 3}{2})^{- 3}} = (\frac{- 8}{27})^{- 2}}} \\

By applying the fraction and exponential rules of equations in left hand side that is,

\bf{\mathsf{\frac{- a}{b} = - \frac{a}{b} \: \: \: \: and \: \: \: (- a)^n = - a^n}}

Now,

\bf{\mathsf{- \frac{x}{(\frac{3}{2})^{- 3}} = (\frac{- 8}{27})^{- 2}}} \\

Now, by applying the rules of exponents into this equation that is,

\bf{\mathsf{(\frac{a}{b})^{- c} = ((\frac{a}{b})^{- 1})^c = (\frac{b}{a})^c}} \\

And, by applying the exponential rule that is,

\bf{\mathsf{(\frac{a}{b})^c = \frac{a^c}{b^c}}} \\

Therefore,

\bf{\mathsf{- \frac{x}{\frac{2^3}{3^3}} = (\frac{- 8}{27})^{- 2}}} \\

Applying the rules of fraction into this that is,

\bf{\mathsf{\frac{a}{\frac{b}{c}} = \frac{a \times c}{b}}} \\

\bf{\mathsf{- \frac{3^3 x}{2^3} = (\frac{- 8}{27})^{- 2}}} \\

\bf{\mathsf{- \frac{27x}{8} = (\frac{- 8}{27})^{- 2}}} \\

Applying the fractional and exponential rules in Right hand side that is,

\bf{\mathsf{1) \: \: \: \: \frac{- a}{b} = - \frac{a}{b}}} \\

\bf{\mathsf{2) \: \: \: \: a^{- b} = \frac{1}{a^b}}} \\

\bf{\mathsf{3) \: \: \: \: (- a)^n = a^n, \qquad If \: \: n \: \: is \: \: even.}}

Hence,

\bf{\mathsf{- \frac{27x}{8} = \frac{1}{(\frac{8}{27})^2}}} \\

Applying the exponential rule that is,

\bf{\mathsf{(\frac{a}{b})^c = \frac{a^c}{b^c}}} \\

Apply the fraction rule that is,

\bf{\mathsf{\frac{1}{\frac{b}{c}} = \frac{c}{b}}} \\

Therefore,

\bf{\mathsf{- \frac{27x}{8} = \frac{27^2}{8^2}}} \\

\bf{\mathsf{- \frac{27x}{8} = \frac{729}{64}}} \\

\bf{\mathsf{- 27x = \frac{729}{8}}} \\

Divide both the sides by the value of "- 27" and simplify.

\bf{\mathsf{\frac{- 27x}{- 27} = \frac{729}{\frac{8}{- 27}}}} \\

\bf{\mathsf{x = - \frac{729}{8 \times 27}}} \\

\bf{\mathsf{x = - \frac{729}{216}}} \\

Cancel out the common term of "27" to obtain the final value.

\bf{\mathsf{\boxed{\therefore \: \: x = - \frac{27}{8}}}} \\

Which is the required solution for this type of query.

Hope this extremely detailed answer helps you and clears the rules to be used simultaneously!
Similar questions