Math, asked by rohitgswamipegttu, 1 year ago

x^3=891 & y^3=1089 find the value of xy

Answers

Answered by TooFree
39

x³ = 891

y³ = 1089


Find the prime factors:

891 = 3^4 \times 11

1089 = 3^2 \times 11^2


Find xy:

xy = ( \sqrt[3]{3^4 \times 11 }\times (\sqrt[3]{3^2 \times 11^2} )

xy = \sqrt[3]{3^6 \times 11^3 }

xy = 3^2 \times 11

xy = 99


Answer: 99



Answered by Sidyandex
8

Here the x^3is of 891 & y^3is of 1089 when wants to find the xy value apply the formula as x^3*y^3 so then the x^3 and y^3 will be calcuated x3 = 891, y3 = 1089, =>x3*y3 = 891*1089 = 970299,

=>xy =∛x3*y3, =>∛970299 = 99 thus when you take cube root you will get the xy value.

Similar questions