Math, asked by Debadattasahu, 1 year ago

x-3/x+3-x+3/x-3=48/7

Answers

Answered by BrainlyPrincess
185
Hope it helps. Plz mark me as brainliest.
Attachments:
Answered by SerenaBochenek
63

Answer:

\text{The solutions are }\frac{9}{4}, -4

Step-by-step explanation:

Given the equation

\frac{x-3}{x+3}-\frac{x+3}{x-3}=\frac{48}{7}

we have to solve the above equation.

\frac{x-3}{x+3}-\frac{x+3}{x-3}=\frac{48}{7}

\frac{(x-3)(x-3)-(x+3)(x+3)}{(x+3)(x-3)}=\frac{48}{7}

Opening brackets, we get

\frac{x^2-6x+9-(x^2+6x+9)}{x^2-3^2}=\frac{48}{7}          (a^2-b^2=(a-b)(a+b))

\frac{-12x}{x^2-9}=\frac{48}{7}

Cross multiplying both sides

7(-12x)=48(x^2-9)

48x^2+84x-432=0

4x^2+7x-36=0

x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}

x=\frac{-7\pm \sqrt{7^2-4(4)(-36)}}{2(4)}

x=\frac{-7\pm \sqrt{625}}{8}

x=\frac{-7+25}{8}, \frac{-7-25}{8}

x=\frac{18}{8}, \frac{-32}{8}

x=\frac{9}{4}, -4

which are required solution.

Similar questions