x^4 +1/x^4 = 119 then the value of x^3 -1/x^3
sarthak96:
please give the answer fast
Answers
Answered by
162
x⁴ + 1/x⁴ = 119
=> x⁴ + 1/x⁴ + 2 = 121
=> (x² + 1/x²) ² = 11²
=> x² + 1/x² = 11 , ignore the negative value as LHS is +ve.
=> x² + 1/x² - 2 = 9
=> (x - 1/x)² = 3²
=> x - 1/x = +3 or -3
=> (x - 1/x)³ = x³ - 1/x³ - 3 x * 1/x * (x - 1/x)
(+ 3) ³ = x³ - 1/x³ - 3 ( + 3)
Answer: x³ - 1/x³ = 3³ + 9 or -30 - 9 = + 36
=> x⁴ + 1/x⁴ + 2 = 121
=> (x² + 1/x²) ² = 11²
=> x² + 1/x² = 11 , ignore the negative value as LHS is +ve.
=> x² + 1/x² - 2 = 9
=> (x - 1/x)² = 3²
=> x - 1/x = +3 or -3
=> (x - 1/x)³ = x³ - 1/x³ - 3 x * 1/x * (x - 1/x)
(+ 3) ³ = x³ - 1/x³ - 3 ( + 3)
Answer: x³ - 1/x³ = 3³ + 9 or -30 - 9 = + 36
Answered by
186
Adding 2 on both sides;
x^4 + 1/x^4 +2 = 119 +2
(x²+1/x²)²=121
x²+1/x²=11
Adding -2 on both sides
x²-2+1/x²=9
(x-1/x)²= 9
x-1/x= ±3
Now, (x-1/x)³= x³-1/x³-3(x-1/x)
Consider x-1/x= 3 .
3³ = x³-1/x³-3(3)
27= x³-1/x³ - 9
27+9=x³-1/x³
36 = x³-1/x³
consider x-1/x = -3
-27 = x³-1/x³-3(-3)
-27 = x³-1/x³+9
-27-9 = x³-1/x³
x³-1/x³ = ±36
Similar questions