Math, asked by rajnandanikumar68421, 1 year ago

(x^4-81)/(x^3+3x^2+9x+27) divide

Answers

Answered by ashishks1912
3

The quotient for the given expression is x-3

Step-by-step explanation:

Given that the fractional expression is \frac{x^4-81}{x^3+3x^2+9x+27}

To divide the given expression :

The expression x^4-81 can be written as x^4-81=x^4+0x^3+0x^2+0x-81 . since for missed terms we can put 0

                                         x-3

                           __________________

x^3+3x^2+9x+27  ) x^4+0x^3+0x^2+0x-81

                                x^4+3x^3+9x^2+27x  

                               (-)__(-)__(-)__(-)_______

                                        -3x^3-9x^2-27x-81

                                        -3x^2-9x^2-27x-81

                                  ___(+)__(+)___(+)__(+)_______

                                                                       0

                                           _____________________

Therefore the quotient to the given expression is x-3

When we divide the given fractional expression we get the quotient is x-3

Therefore \frac{x^4-81}{x^3+3x^2+9x+27}=x-3

Answered by khushi28080
1

Answer:

(x-3) is the answer.☺

hope this help u

Similar questions