x+5=5 and xy=6 find the value of x^2+y^2
Answers
Answered by
2
Your question needs a correction :
correct question : x+y=5 and xy=6 find the value of x^2+y^2
==============================
Solution :
x + y = 5
Square on both sides,
(x + y)² = 5²
-------------------
We know, (a + b)² = a² + b² + 2ab
----------------
(x + y)² = 5²
x² + y² + 2xy = 25
x² + y² + 2(6) = 25
x² + y² + 12 = 25
x² + y² = 25 - 12
x² + y² = 13
i hope this will help you
(-:
correct question : x+y=5 and xy=6 find the value of x^2+y^2
==============================
Solution :
x + y = 5
Square on both sides,
(x + y)² = 5²
-------------------
We know, (a + b)² = a² + b² + 2ab
----------------
(x + y)² = 5²
x² + y² + 2xy = 25
x² + y² + 2(6) = 25
x² + y² + 12 = 25
x² + y² = 25 - 12
x² + y² = 13
i hope this will help you
(-:
Answered by
0
i think there should be y in place of x+y
x+y =5
and,xy= 6
so,(x+y)^2 =x^2 +y^2 +2xy
=(5)^2 =x^2+y^2 +2*6
=25=x^2 +y^2+12
x^2+y^2+=25-12
x^2+y^2= 13
x+y =5
and,xy= 6
so,(x+y)^2 =x^2 +y^2 +2xy
=(5)^2 =x^2+y^2 +2*6
=25=x^2 +y^2+12
x^2+y^2+=25-12
x^2+y^2= 13
Similar questions