Math, asked by anupamach123, 7 months ago

(x^a+b)² × (x^b+c)² × (x^c+a)² / (x^a×x^b×x^c)⁴= 1​

Answers

Answered by beckydanieldaniel
0

Step-by-step explanation:

(xa+b)2(xb+c)2(xc+a)2÷( xaxbxc)4=1. 2 ... Simplify [p^(a-b)]^c x [p^(a-c)] ^b x [p^(-a)]^a x [p^b]^c ... x/6+y/15=4 how?

Answered by Salmonpanna2022
3

Step-by-step explanation:

 \bf \underline{Solution-} \\

\textsf{We have,}\\

 \bf{LHS} \:  \sf{ = \frac{( {x}^{a + b }  {)}^{2}  \times ( {x}^{b + c}  {)}^{2}  \times ( {x}^{c + a}  {)}^{2} }{( {x}^{a} \times  {x}^{b}   \times  {x}^{c}  {)}^{4} } } \\

 \sf{ =  \frac{ {x}^{2(a + b)}  \times  {x}^{(2b + c)} \times  {x}^{2(c + a)}  }{ {x}^{4(a + b + c)} } } \\

 \sf{ =  \frac{ {x}^{2a +2 b}  \times  {x}^{2b +2 c} \times  {x}^{2c + 2a}  }{ {x}^{4a +4 b + 4c} } } \\

 \sf{ =   \frac{ {x}^{2a + 2b + 2b + 2c + 2c + 2a} }{ {x}^{4a + 4b + 4c} } } \\

 \sf{ =   \frac{ {x}^{4a + 4b  + 4c} }{ {x}^{4a + 4b + 4c} } } \\

 \sf{ =   1}  \: \bf{RHS} \\

 \bf \underline{Hence \:proved.} \\

Similar questions