(X^a/x^b)^1/ab (x^b/x^c)^1/bc (x^c/x^a)^1/ca=1
Answers
Answered by
165
Hi ,
we know that
1 ) x ^m / x^n = x ^ ( m -n )
2 ) ( x^m )^n = x ^mn
3 ) x^0 = 1
4) x^m * x^n = x ^( m+ n )
Now ,
LHS=(x^a/x^b)^1/ab( x^b /x^c)^1/bc(x^c/x^a)^1/ca
= (x^a-b)1/ab(x^b-c)^1/bc(x^c-a)^1/ca
= x^(a-b)/ab * x^(b-c)/bc * x^(c-a)/ca
= x^[(a-b)/ab + (b-c)/bc + (c-a)/ca]
= x^[c(a-b)/abc + a(b-c)/abc + b(c-a)/abc ]
= x ^{ [c(a-b)+ a(b-c) + b(c-a) ]/abc }
= x^ ( ac - bc + ab - ac + bc - ab ] /ABC
= x^ 0/abc
= x^0
= 1
= RHS
I hope this helps you.
:)
we know that
1 ) x ^m / x^n = x ^ ( m -n )
2 ) ( x^m )^n = x ^mn
3 ) x^0 = 1
4) x^m * x^n = x ^( m+ n )
Now ,
LHS=(x^a/x^b)^1/ab( x^b /x^c)^1/bc(x^c/x^a)^1/ca
= (x^a-b)1/ab(x^b-c)^1/bc(x^c-a)^1/ca
= x^(a-b)/ab * x^(b-c)/bc * x^(c-a)/ca
= x^[(a-b)/ab + (b-c)/bc + (c-a)/ca]
= x^[c(a-b)/abc + a(b-c)/abc + b(c-a)/abc ]
= x ^{ [c(a-b)+ a(b-c) + b(c-a) ]/abc }
= x^ ( ac - bc + ab - ac + bc - ab ] /ABC
= x^ 0/abc
= x^0
= 1
= RHS
I hope this helps you.
:)
Answered by
223
hope this helps u.......
Attachments:
Similar questions