Math, asked by gudiya1920, 1 year ago

x logx dx find the integration of x logx

Answers

Answered by MarkAsBrainliest
11

Answer :

Now,

 \int x  \: logx \: dx \\  \\  = logx \: \int x \: dx -   \int ( \frac{d}{dx} (logx) \times  \int x \: dx)dx \\  \\  = (logx) (\frac{ {x}^{2} }{2} ) -  \int ( \frac{1}{x}  \times   \frac{ {x}^{2} }{2} )dx + c \\  \\ where \:  \: c \:  \: is \:  \: integral \:  \: constant \\  \\  =  \frac{1}{2}  {x}^{2} logx -  \frac{1}{2}  \int x \: dx + c \\  \\  =  \frac{1}{2}  {x}^{2} logx -  \frac{1}{2} ( \frac{1}{2}  {x}^{2} ) + c \\  \\  =  \frac{1}{2}  {x}^{2} (logx -  \frac{1}{2} ) + c

#MarkAsBrainliest

Similar questions