Math, asked by mobiles, 1 year ago

x=root3/2 find the value of 1+x/1+root1+x + 1-x/1-root1-x

Attachments:

Answers

Answered by Adityaadidangi
27
here is your answer dear

hope it helps you
@di
Attachments:

Adityaadidangi: in my first solution
Adityaadidangi: 12 - 6√3 = (3+√3)²
Adityaadidangi: and
Adityaadidangi: sorry it's 12+6√3
Adityaadidangi: and
Adityaadidangi: 4+2√3 = (1+√3)²
Adityaadidangi: hope you get it
Answered by aquialaska
47

Answer:

Value is 1.

Step-by-step explanation:

Given: x = \frac{\sqrt{3}}{2}

To find: \frac{1+x}{1+\sqrt{1+x}}+\frac{1-x}{1-\sqrt{1-x}}

\frac{1+x}{1+\sqrt{1+x}}+\frac{1-x}{1-\sqrt{1-x}}

Put Value of x in fiven expresion we get,

\frac{1+\frac{\sqrt{3}}{2}}{1+\sqrt{1+\frac{\sqrt{3}}{2}}}+\frac{1-\frac{\sqrt{3}}{2}}{1-\sqrt{1-\frac{\sqrt{3}}{2}}}

⇒  \frac{\frac{2+\sqrt{3}}{2}}{1+\sqrt{\frac{2+\sqrt{3}}{2}}}+\frac{\frac{2-\sqrt{3}}{2}}{1-\sqrt{\frac{2-\sqrt{3}}{2}}}

⇒  \frac{\frac{2+\sqrt{3}}{2}}{1+\sqrt{\frac{4+2\sqrt{3}}{4}}}+\frac{\frac{2-\sqrt{3}}{2}}{1-\sqrt{\frac{4-2\sqrt{3}}{4}}}

⇒  \frac{\frac{2+\sqrt{3}}{2}}{\frac{2+\sqrt{4+2\sqrt{3}}}{2}}+\frac{\frac{2-\sqrt{3}}{2}}{\frac{2-\sqrt{4-2\sqrt{3}}}{2}}

⇒  \frac{2+\sqrt{3}}{2+\sqrt{4+2\sqrt{3}}}+\frac{2-\sqrt{3}}{2-\sqrt{4-2\sqrt{3}}}

⇒  \frac{(2+\sqrt{3})(2-\sqrt{4-2\sqrt{3}})+(2-\sqrt{3})(2+\sqrt{4+2\sqrt{3}})}{(2+\sqrt{4+2\sqrt{3}})(2-\sqrt{4-2\sqrt{3}})}

⇒  \frac{4-\sqrt{12-6\sqrt{3}}+2\sqrt{3}2\sqrt{4-2\sqrt{3}}+42\sqrt{3}-\sqrt{12+6\sqrt{3}}+2\sqrt{4+6\sqrt{3}}}{4+2\sqrt{4+2\sqrt{3}}-2\sqrt{4-2\sqrt{3}}-\sqrt{16-12}}

⇒  \frac{8-\sqrt{12-6\sqrt{3}}-\sqrt{12+6\sqrt{3}}+2\sqrt{4+2\sqrt{3}}-2\sqrt{4-2\sqrt{3}}}{2+2\sqrt{4+2\sqrt{3}}-2\sqrt{4-2\sqrt{3}}}

⇒  \frac{8-(3-3)-(3+\sqrt{3})+2(1+\sqrt{3})-2(1-\sqrt{3})}{2+2(1+\sqrt{3})-2(1-\sqrt{3})}

⇒  \frac{8-6+\sqrt{3}-\sqrt{3}+2-2+2\sqrt{3}+2\sqrt{3}}{2+2+2\sqrt{3}-2+2\sqrt{3}}

⇒  \frac{2+2\sqrt{3}+2\sqrt{3}}{2+2\sqrt{3}+2\sqrt{3}}

⇒  1

Similar questions