x square - bracket open 2 root 3 + 3 Y bracket close X + 6 root 3 I is equals to zero
Answers
Answer:
x = 1z
y = ((root3 * 4 + 1)/3)z
(z = Natural no.)so that the value of both will be equal
see below
Step-by-step explanation:
x^2 - (2root3 + 3y)x + 6root3 = 0
x^2 - 2x root3 - 3xy + 6 root3 = 0
x^2 - 3xy = 2x root3 - 6 root3
x^2 - 3xy = root3 (2x -6)
substituting x as 1 then
1^2 -3(1)y = root3 (2(1)-6)
1 -3y = root3(-4)
1 -3y = -(root3 * 4)
-3y = -(root * 4) -1
-3y = -(root * 4 + 1)
3y = root3 * 4 + 1
y = (root3 * 4 + 1)/3
so x = 1z
y = ((root3 * 4 + 1)/3)z
(z = Natural no.)so that the value of both will be equal
eg, let z = 3/(root3 * 4 + 1) then,
then, y = (root3 * 4 + 1)/3 * 3/(root3 * 4 + 1) = 1
and x = 1 * 3/(root3 * 4 + 1) = 3/(root3 * 4 + 1) ...............(1)
or z = 2
x = 1 * 2 = 2
y = (root3 * 4 + 1)/3 * 2 = ((root3 * 4 + 1)2)/3 .................(2)
using both (1) and (2) in the equation -- x^2 - (2root3 + 3y)x + 6root3 = 0
in both the cases the answer will be same