Math, asked by dsuryatej8248, 1 year ago

x=squareroot 3+squareroot 2/squareroot 3 -squareroot 2 and y=squareroot3-squareroot2/squareroot3+ squareroot2 find value of x^2-y^2+xylophone if squareroot6 is 2.4

Answers

Answered by waqarsd
0

 {(x + y)}^{2}  -  {(x - y)}^{2} = 4xy \\  {(x + y)}^{2}   ={ x}^{2}  +  {y}^{2}   + 2xy\\ x =  \frac{ \sqrt{3}  +  \sqrt{2} }{ \sqrt{3} -  \sqrt{2}  }  \\ y =  \frac{ \sqrt{3}  -  \sqrt{2} }{ \sqrt{3}  +  \sqrt{2} }  \\ x =  \frac{ \sqrt{3}  +  \sqrt{2} }{ \sqrt{3} -  \sqrt{2}  }  \times  \frac{ \sqrt{3}  +  \sqrt{2} }{ \sqrt{3}  +  \sqrt{2}  }  \\ x =  \frac{{ (\sqrt{3}  +  \sqrt{2})}^{2}  }{ 3 - 2  }  =  {( \sqrt{3}  +  \sqrt{2} )}^{2}  \\ y =  \frac{ \sqrt{3}   -   \sqrt{2} }{ \sqrt{3}  +   \sqrt{2}  }  \times  \frac{ \sqrt{3}   -   \sqrt{2} }{ \sqrt{3} -  \sqrt{2}  }  \\ y =  {( \sqrt{3} -   \sqrt{2})  }^{2}  \\ now \\  {x}^{2}  =  {( \sqrt{3}  +  \sqrt{2}) }^{4}  \\  {y}^{2}  =  {( \sqrt{3} -  \sqrt{2})  }^{4}  \\ xy =  {( \sqrt{3} +  \sqrt{2} ) }^{2}  {( \sqrt{3} -  \sqrt{2})  }^{2}  =  {1}^{2}  = 1 \\ now \\  {x}^{2}  -  {y}^{2}  + xy \\  = {( \sqrt{3}  +   \sqrt{2})  }^{4} - {( \sqrt{3} -  \sqrt{2})  }^{4} + 1 \\  =  {(5 + 2 \sqrt{6} )}^{2}  - {(5 - 2 \sqrt{6} )} ^{2}  \\  = 8 \sqrt{6}  \\  = 8(2.4) \\  = 19.2
hope it helps.
Similar questions