x+y+z;=15;xyz=10;xy+yz+zx=71
Answers
Answered by
1
➡ Given :-
→ x + y + z = 15.
→ xy + yz + zx = 71.
→ xyz = 10.
➡ To find :-
→ x³ + y³ + z³ .
▶ Solution :-
We have,
x + y + z = 15.
[ Squaring both side ].
=> ( x + y + z )² = ( 15 )² .
=> x² + y² + z² +2( xy + yz + zx ) = 225.
=> x² + y² + z² + 2( 71 ) = 225.
=> x² + y² + z² + 142 = 225.
=> x² + y² + z² = 225 - 142.
•°• x² + y²+ z² = 83.
▶Now, using Identity :-
→ x³ + y³ + z³ - 3xyz = ( x + y + z )( x² + y² + z² - ( xy + yz + zx ) .
=> x³ + y³ + z³ - 3( 10 ) = ( 15 )( 83 - ( 71 ) ).
=> x³ + y³ + z³ - 30 = 15 × ( 83 - 71 ) .
=> x³ + y³ + z³ - 30 = 15 × 12.
=> x³ + y³ + z³ = 180 + 30 .
•°• x³ + y³ + z³ = 210.
Similar questions