Math, asked by kancharalavarshini, 4 months ago

X3+4x2-25x-100
find the polyomial ​

Answers

Answered by snehitha2
2

Answer :

The zeroes are -4 , -5 and 5.

Step-by-step explanation:

Cubic Polynomial :

  • It is a polynomial of degree 3.
  • General form :

      ax³ + bx² + cx + d

  • Relationship between zeroes and coefficients :

       ☆ Sum of zeroes = -b/a

       ☆ Sum of the product of zeroes taken two at a time = c/a

       ☆ Product of zeroes = -d/a

_______________________________

Given,

cubic polynomial, x³ + 4x² - 25x - 100

To find the zeroes of the polynomial, factorize it.

⇒ x³ + 4x² - 25x - 100 = 0

Find the common factor,

  x² (x + 4) - 25 (x + 4) = 0

   (x + 4) (x² - 25) = 0

    (x + 4) (x² - 5²) = 0

we know, a² - b² = (a + b) (a - b)

 (x + 4) (x + 5) (x - 5) = 0

The factors of the given polynomial are (x + 4) , (x + 5) and (x - 5)

=> x + 4 = 0 ; x = -4

=> x + 5 = 0 ; x = -5

=> x - 5 = 0 ; x = 5

The zeroes of the polynomial are -4 , -5 and 5

Verification :

  • Put x = -4,

⇒ (-4)³ + 4(-4)² - 25(-4) - 100

⇒ -64 + 4(16) + 100 - 100

⇒ -64 + 64

⇒ 0

∴ -4 is a zero.

  • Put x = -5,

⇒ (-5)³ + 4(-5)² - 25(-5) - 100

⇒ -125 + 4(25) + 125 - 100

⇒ -125 + 100 + 125 - 100

⇒ 0

∴ -5 is a zero

  • Put x = 5,

⇒ 5³ + 4(5)² - 25(5) - 100

⇒ 125 + 4(25) - 125 - 100

⇒ 125 + 100 - 125 - 100

⇒ 0

∴ 5 is a zero

Hence verified!

Similar questions