x³+y³+15xy-125ifx+y=5
Answers
Answered by
2
x^3+y^3 +15xy -125
(using X^3+y^3 = (x+y)(x^2-xy+y^2) )
(x+y)(x^2-xy+y^2)+ 15xy -125
since x+y = 5
5(x^2-xy+y^2)+ 15 xy -125
5 x^2 - 5xy +5y^2 +15xy -125
5x^2 + 10 xy + 5y^2 -125
5(X^2 + 2xy + y^2)-125
5(x+y)^2 -125
5(5)^2 -125
5(25) -125
125 -125
0
(using X^3+y^3 = (x+y)(x^2-xy+y^2) )
(x+y)(x^2-xy+y^2)+ 15xy -125
since x+y = 5
5(x^2-xy+y^2)+ 15 xy -125
5 x^2 - 5xy +5y^2 +15xy -125
5x^2 + 10 xy + 5y^2 -125
5(X^2 + 2xy + y^2)-125
5(x+y)^2 -125
5(5)^2 -125
5(25) -125
125 -125
0
Answered by
1
we can solve it as below
=x^3+y^3+15xy-125+3xy(x+y)-3xy(x+y) by adding and subtracting 3xy(x+y)
so we can write x^3+y^3+3xy(x+y) =(x+y)^3
and the equation becomes
=(x+y)^3+15xy-125-3xy(x+y)
now substitute x+y=5 in the above equation
=5^3 +15xy-125-3xy*5
now 5^3=125
3xy*5=15xy
thus equation becomes
=125+15xy-125-15xy
=0
thus the answer is zero
=x^3+y^3+15xy-125+3xy(x+y)-3xy(x+y) by adding and subtracting 3xy(x+y)
so we can write x^3+y^3+3xy(x+y) =(x+y)^3
and the equation becomes
=(x+y)^3+15xy-125-3xy(x+y)
now substitute x+y=5 in the above equation
=5^3 +15xy-125-3xy*5
now 5^3=125
3xy*5=15xy
thus equation becomes
=125+15xy-125-15xy
=0
thus the answer is zero
Similar questions