Math, asked by siddhukr8307, 1 year ago

y = \frac{e^{x}}{sin x} dy/dx ज्ञात कीजिए

Answers

Answered by amitnrw
0

dy/dx   =eˣ (Sinx - Cosx) /Sin²x  यदि y  =  eˣ/Sinx

Step-by-step explanation:

y  =  eˣ/Sinx

dy/dx   =    (eˣ)'/Sinx   + eˣ * (1/Sinx)'

=> dy/dx   =  eˣ/Sinx   + eˣ ( - 1/Sin²x) (Cosx)

=> dy/dx   =eˣ /Sinx  -   eˣCosx/Sin²x

=> dy/dx   =eˣ Sinx/Sin²x  -   eˣCosx/Sin²x

=> dy/dx   =eˣ (Sinx - Cosx) /Sin²x

और अधिक जानें :

sin(x²+5)"

brainly.in/question/15286193

sin (ax+b) फलन का अवकलन कीजिए

brainly.in/question/15286166

Answered by Sharad001
4

Question :-

 \rm \: if \: y \:  =  \frac{ {e}^{x} }{ \sin x}  \:  \: then \: find \:  \frac{dy}{dx}  \\

Answer :-

\to \boxed{ \rm  \frac{dy}{dx}  =  \frac{ {e}^{x} ( \sin x -  \cos x)}{ { \sin}^{2} x} } \:  \\

To Find :-

 \to \rm \:   \frac{dy}{dx}  \\

Concept used :-

If two functions of x is in fraction then we have to use quotient rule of differentiation that is -

 \rm \to \:  \frac{d}{dx}  \frac{u}{v} \:  =  \frac{v \frac{d}{dx} u - u \frac{d}{dx} v}{ {v}^{2} }   \\

Solution :-

We have

 \to \rm \:  y =  \frac{ {e}^{x} }{ \sin x}  \\  \\ \sf differentiate \: with \: respect \: to \: x \\  \\  \to \rm \frac{dy}{dx} \:  =  \frac{ \sin x \frac{d}{dx} {e}^{x}   -  {e}^{x}  \frac{d}{dx}  \sin x}{ { \sin}^{2}x }  \\  \\  \boxed{ \because \rm \frac{d}{dx}  {e}^{x}  =  {e}^{x}  \:  \:  \: and \:  \: y  \:  \frac{d}{dx} \sin x =  \cos x } \\  \therefore \:  \\  \\  \to \rm \frac{dy}{dx}  =  \frac{ {e}^{x} \sin x -  \cos x \:  {e}^{x}  }{ { \sin}^{2} x}  \\ \sf or \\  \\  \to \boxed{ \rm  \frac{dy}{dx}  =  \frac{ {e}^{x} ( \sin x -  \cos x)}{ { \sin}^{2} x} }

Similar questions