Physics, asked by gururajaheri3805, 9 months ago

Y= sin^3x+sin3x
Find the differentiation

Answers

Answered by biligiri
0

Answer:

given y = sin^3x + sin3x

dy/dx = d(sin^3x)/dx + d(sin3x)/DC

= 3 sin^2x * cos x + cos3x * 3

= 3(sin^2 x cos x + cos 3x)

Answered by DrNykterstein
1

</p><p> \sf \rightarrow \quad y =  {sin}^{3}  \: x  + sin \: 3x \\  \\ \sf \rightarrow \quad  \frac{dy}{dx} =  \frac{d}{dx}  \bigg(  {sin}^{3}  \: x  + sin \: 3x \bigg) \\  \\ \sf \rightarrow \quad  \frac{dy}{dx}  =  \frac{d {(sin \: x)}^{3} }{dx}  +  \frac{d(sin \: 3x)}{dx}  \\  \\ \sf \rightarrow \quad  \frac{dy}{dx}  =  \bigg\{ \frac{d {(sin \: x)}^{3} }{d  \: sin \: x}   \:  \cdot \:  \frac{d ( sin \: x)}{dx}  \bigg\} +  \bigg\{   \frac{d(sin \: 3x)}{d \: 3x}   \:  \cdot \:  3\frac{dx}{dx}  \bigg\} \\  \\ \sf \rightarrow \quad  \frac{dy}{dx}  =  \bigg \{ 3 {sin}^{2}  \: x \cdot \:  cos \: x \bigg \} -  \bigg \{ cos \: 3x  \:  \cdot \: 3  \bigg\} \\  \\ \sf \rightarrow \quad  \frac{dy}{dx}  = 3 {sin}^{2}  \: x \: cos \: x - 3cos \: 3x \\ \\ \sf \rightarrow \quad \frac{dy}{dx} = 3 ( sin^{2} \: x \: cos \: x - cos \: 3x )</p><p>

Similar questions