yar plzz koi solbe kardo...
plezzzzzz
plezzzzzz
Attachments:
jobpsleen:
hlo
Answers
Answered by
4
Given f(x) = 3x^3 - 2x^2 + 5x - 5,
g(x) = 3x + 1
Divide f(x) by g(x).
x^2 - x + 2
-----------------------------
3x + 1) 3x^3 - 2x^2 + 5x - 5
3x^3 + x^2
-----------------------------
-3x^2 + 5x - 5
-3x^2 - x
--------------------------------
6x - 5
6x + 2
-------------------------------------
-7.
Dividend = 3x^3 - 2x^2 + 5x - 5.
Divisor = 3x + 1.
Quotient = x^2 - x + 2.
Remainder = -7.
Verification:
Dividend = Divisor * Quotient + Remainder
= (3x + 1) * (x^2 - x + 2) + (-7)
= (3x^3 - 3x^2 + 6x + x^2 - x + 2) + (-7)
= 3x^3 - 2x^2 + 5x - 5
= Dividend
Hope this helps!
g(x) = 3x + 1
Divide f(x) by g(x).
x^2 - x + 2
-----------------------------
3x + 1) 3x^3 - 2x^2 + 5x - 5
3x^3 + x^2
-----------------------------
-3x^2 + 5x - 5
-3x^2 - x
--------------------------------
6x - 5
6x + 2
-------------------------------------
-7.
Dividend = 3x^3 - 2x^2 + 5x - 5.
Divisor = 3x + 1.
Quotient = x^2 - x + 2.
Remainder = -7.
Verification:
Dividend = Divisor * Quotient + Remainder
= (3x + 1) * (x^2 - x + 2) + (-7)
= (3x^3 - 3x^2 + 6x + x^2 - x + 2) + (-7)
= 3x^3 - 2x^2 + 5x - 5
= Dividend
Hope this helps!
Answered by
17
ժℏժʏṽ♭✘♭ժℏṽᾰℏᾰℏ❡ṧ! ❡♩❡ṧ♩ṧ❡ṧ❡ℏḟтԻтԻʏт
℘ᾰ❡ᾰℓℓ ḉ ǭṳḙṧт!✺ℵ
℘ᾰ❡ᾰℓℓ ḉ ǭṳḙṧт!✺ℵ
Similar questions