यदि cosy = xcos (a+y), तथा cos a ≠ ± 1, तो सिद्ध कीजिए कि dy/dx = cos^{2}(a+y) / sina
Answers
Answer:
search in goggle chrome
you get best results phhshsnx
djdjdhd
dy/dx = Cos²(a + y)/Sina यदि cosy = xcos (a+y),
Step-by-step explanation:
cosy = xcos (a+y)
-Siny (dy/dx) = x (-Sin(a + y)(dy/dx) + Cos(a + y)
=> dy/dx (xSin(a + y) - Siny) = Cos(a + y)
=> dy/dx (xSin(a + y) - Siny)Cos(a + y) = Cos(a + y)Cos(a + y)
=> dy/dx (xSin(a + y)Cos(a + y) - SinyCos(a + y) = Cos²(a + y)
cosy = xcos (a+y)
=> dy/dx (Sin(a + y)Cosy - SinyCos(a + y) = Cos²(a + y)
Sin(a - b) = SinaCosb - CosaSinb
=> dy/dx (Sin(a + y - y) = Cos²(a + y)
=> dy/dx (Sin(a)) = Cos²(a + y)
=> dy/dx = Cos²(a + y)/Sina
और अधिक जानें :
(x + 3)^{2} .(x + 4)^{3} .(x + 5)^{4} प्रदत्त फलनों का x के सापेक्ष अवकलन कीजिए
brainly.in/question/15287089
f(x) = (1 + x) (1 + x^{2}) (1 + x^{4}) (1 + x^{8}) द्वारा प्रदत्त फलन का अवकलज ज्ञात कीजिए और इस प्रकार f'(1) ज्ञात कीजिए।
brainly.in/question/15287093