Math, asked by SahilSayal3209, 9 months ago

यदि cosy = xcos (a+y), तथा cos a ≠ ± 1, तो सिद्ध कीजिए कि dy/dx = cos^{2}(a+y) / sina

Answers

Answered by vutlagopalreddy
0

Answer:

search in goggle chrome

you get best results phhshsnx

djdjdhd

Answered by amitnrw
1

dy/dx   = Cos²(a + y)/Sina यदि cosy = xcos (a+y),

Step-by-step explanation:

cosy = xcos (a+y)

-Siny (dy/dx)  = x (-Sin(a + y)(dy/dx)  + Cos(a + y)

=> dy/dx (xSin(a + y) - Siny)  = Cos(a + y)

=> dy/dx (xSin(a + y) - Siny)Cos(a + y)  = Cos(a + y)Cos(a + y)

=> dy/dx (xSin(a + y)Cos(a + y) - SinyCos(a + y)  = Cos²(a + y)

cosy = xcos (a+y)

=> dy/dx (Sin(a + y)Cosy - SinyCos(a + y)  = Cos²(a + y)

Sin(a - b) = SinaCosb - CosaSinb

=> dy/dx (Sin(a + y - y)  = Cos²(a + y)

=> dy/dx (Sin(a))  = Cos²(a + y)

=> dy/dx   = Cos²(a + y)/Sina

और अधिक जानें :

(x + 3)^{2} .(x + 4)^{3} .(x + 5)^{4} प्रदत्त फलनों का x के सापेक्ष अवकलन कीजिए

brainly.in/question/15287089

f(x) = (1 + x) (1 + x^{2}) (1 + x^{4}) (1 + x^{8}) द्वारा प्रदत्त फलन का अवकलज ज्ञात कीजिए और इस प्रकार f'(1) ज्ञात कीजिए।

brainly.in/question/15287093

Similar questions