Math, asked by BrainlyHelper, 1 year ago

यदि  cot \theta =\frac{7}{8}  तो
(i) \frac{(1+sin\theta)(1-sin\theta)}{(1+cos\theta)(1-cos\theta)} ,
(ii)  cot^{2} \theta का मान निकालिए?

Answers

Answered by hukam0685
0
यदि  cot \theta =\frac{7}{8} तो

इस समकोण त्रिभुज में

आधार = 7k

लंब = 8k

कर्ण = √113 k

 sin \:\theta = \frac{8}{ \sqrt{113} } \\ \\ cos\theta = \frac{7}{ \sqrt{113} } \\ \\ \frac{(1 - sin\theta)(1 + sin\theta)}{(1 + cos\theta)(1 - cos\theta)} \\ \\ = \frac{1 - {sin}^{2}\theta}{1 - {cos}^{2}\theta} \\ \\ = \frac{1 - \frac{64}{113} }{1 - \frac{49}{113} } \\ \\ = \frac{113 - 64}{113 - 49} \\ \\ = \frac{49}{64}

(ii)  cot^{2} \theta का मान निकालिए?

 {cot}^{2} \theta = \frac{ {cos}^{2}\theta}{ {sin}^{2} \theta} \\ \\ = \frac{ ({ \frac{7}{ \sqrt{113} } )}^{2} }{ {( \frac{8}{ \sqrt{113} } )}^{2} } \\ \\ \\ {cot}^{2}\theta= \frac{49}{64}
Similar questions