Math, asked by PragyaTbia, 1 year ago

यदि \dfrac{1}{6!} + \dfrac{1}{7!} = \dfrac{x}{8!}, ता x का मान ज्ञात कीजिए।

Answers

Answered by hukam0685
5
यदि \dfrac{1}{6!} + \dfrac{1}{7!} = \dfrac{x}{8!}, ता x का मान ज्ञात कीजिए।

हल:

जैसा कि हम जानते हैं,

n! = n(n-1)!

7!=7×6!

8!=8×7×6!

 \dfrac{1}{6!} + \dfrac{1}{7!} = \dfrac{x}{8!} \\  \\ \dfrac{1}{6!} + \dfrac{1}{7 \times 6!} = \dfrac{x}{8 \times 7 \times 6!} \\  \\ <br /> \\ 1 +  \frac{1}{7} <br /> =  \frac{x}{8 \times 7}  \\  \\   \frac{8}{7}  =  \frac{x}{8 \times 7}  \\  \\ x = 64 \\  \\
Answered by Swarnimkumar22
5

हल-

दिया है

 \frac{1}{6!}  +  \frac{1}{7!}  =  \frac{x}{8!}  \\  \\  \\  =  \frac{1}{6!}  +  \frac{1}{7 \times 6!}  \\  \\  \\  =  \frac{x}{8 \times 7 \times 6!}  \\  \\  \\  =  \frac{8 \times 7 \times 6!}{6!}  +  \frac{8 \times 7 \times 6!}{7 \times 6!}  =  x  \:

( 8 × 7 × 6! से गुणा करने पर )

8 × 7 + 8 = x

x = 56 + 8

= 64

Similar questions