Physics, asked by ravijuli25, 11 months ago

Yoni rod of uniform thickness is placed along x axis with one end of origin if length of rod is l and its linear mass density is proportional to X then find the distance of centre of mass from origin​

Answers

Answered by nirman95
52

Answer:

Given:

Rod of uniform thickness and linear mass density is placed along x axis.

Let linear mass density be λ.

To find:

Distance of Centre of Mass from origin.

Calculation:

As per question ;

 \lambda \:  \propto \: x

Introducing a constant :

 \lambda \:  = k x

Now , trying to find out the centre of mass :

 \displaystyle \bar x =  \dfrac{ \int \: x \: dm}{ \int \: dm}

We will be considering a small mass element at a distance of x from origin (0,0)

 \displaystyle  \implies\bar x =  \dfrac{ \int \: x \: ( \lambda \: \times  dx)}{ \int \:  (\lambda \:  \times dx)}

Putting value of λ :

 \displaystyle  \implies\bar x =  \dfrac{ \int \: x \: ( kx \: \times  dx)}{ \int \:  (kx \:  \times dx)}

 \displaystyle  \implies\bar x =  \dfrac{ \int \: ( {x}^{2} \: \times  dx)}{ \int \:  (x \:  \times dx)}

 \implies \bar x =  \dfrac{  \bigg \{\dfrac{ {x}^{3} }{3} \bigg \} }{  \bigg \{\dfrac{ {x}^{2} }{2}  \bigg \}}

Putting the limits :

 \implies \bar x =  \dfrac{  \bigg \{\dfrac{ {x}^{3} }{3} \bigg \}_{0}^{l} }{  \bigg \{\dfrac{ {x}^{2} }{2}  \bigg \}_{0}^{l}}

 \implies \bar x =  \dfrac{2}{3} l

So final answer :

 \boxed{ \huge{ \red{ \bold{\bar x =  \dfrac{2}{3} l}}}}

Answered by Anonymous
33

SoLuTiOn :

Given:

✏ A rod of uniform thickness is placed along x-axis with one end of origin.

✏ Length of rod = L

✏ Linear mass density of rod is directly proportional to x(distance from origin).

To Find:

✏ Distance of centre of mass from origin.

Formula:

✏ Formula of centre of mass for uniform mass distribution is given by

 \orange{ \bigstar} \:  \underline{ \boxed{ \bold{ \sf{ \purple{x{ \tiny{cm}} =  \frac{ \int{x \: dm}}{ \int{dm}} }}}}} \:  \orange{ \bigstar}

Calculation:

 \mapsto \sf \: As \: per \: given \: question \\  \\  \sf \:  \lambda \propto \: x \:  \implies \:  \lambda = kx \\  \\  \mapsto \sf \: k = proportionality \: constant

  • Centre of mass of rod :

 \implies \sf \: x{ \tiny{cm}} =  \frac{ \int{x \: dm}}{ \int{dm}}  \\  \\  \implies \sf \: we \: know \: that \:   \red{dm =  \lambda \: dx} \\  \\  \implies \sf \: x{ \tiny{cm}} =  \frac{ \int{x \: ( \lambda \: dx)}}{ \int( \lambda \: dx)}  =  \frac{ \int \: x \: (kx \: dx)}{ \int(kx \: dx)}  \\  \\  \implies \sf \: x{ \tiny{cm}} =  \frac{( \frac{ {x}^{3} }{3} )}{ (\frac{ {x}^{2} }{2}) }  =\lim_{0 \to L} {\frac{2x}{3} } \\  \\  \implies \sf \:  \underline{ \boxed{ \bold{ \sf{ \pink{x{ \tiny{cm}} =  \frac{2L}{3}}}}}}  \:  \orange{ \bigstar}

Similar questions