z.= (2 x + a) (2 y + b)
Answers
Answer:
Experimental or Empirical Probability for an event P(E):-
\boxed{\sf P(E) \: = \: \dfrac{Number \: of \: trails \: in \: which \: the \: event \: happened}{Total \: number \: of \: trails}}
P(E)=
Totalnumberoftrails
Numberoftrailsinwhichtheeventhappened
\green{\textsf{\underline{\underline{Theoretical or Classical Probability for an event P(T):-}}}}
Theoretical or Classical Probability for an event P(T):-
\boxed{\sf P(T) \: = \: \dfrac{Number \: of \: outcomes \: favourable \: to \: T}{Number \: of \: all \: possible \: outcomes \: of \: the \: experiment}}
P(T)=
Numberofallpossibleoutcomesoftheexperiment
NumberofoutcomesfavourabletoT
\purple{\textsf{\underline{\underline{Complementary Events:-}}}}
Complementary Events:-
\boxed{\sf P(E) \: + \: P(not \: E) \: = \: 1.}
P(E)+P(notE)=1.
\pink{\textsf{\underline{\underline{Probability of an event lies between:-}}}}
Probability of an event lies between:-
\boxed{\sf 0\: ≤\: P(E) \: ≤ \: 1.}
0≤P(E)≤1.
\red{\textsf{\underline{\underline{Probability of a sure event = 1.}}}}
Probability of a sure event = 1.
\green{\textsf{\underline{\underline{Probability of a impossible event = 0.}}}}
Probability of a impossible event = 0.