1)In the current flows through the coil , ___ are produced at each point on the coil.
2) In the above experiment , the intensity of magnetic field at any point by a current flowing through a coil , is dependent on the ____________
PL solve these questions urgent
Answers
Answered by
4
1 > MAGNETIC FIELD
2 > * NUMBER OF TURNS,
*CHANGE IN CURRENT
skumar734765:
PLZ MARK AS BRAINLIST
Answered by
2
We now know from the previous tutorials that a straight current carrying conductor produces a circular magnetic field around itself at all points along its length and that the direction of rotation of this magnetic field depends upon the direction of current flow through the conductor, the Left Hand Rule.
In the last tutorial about Electromagnetism we saw that if we bend the conductor into a single loop the current will flow in opposite directions through the loop producing a clockwise field and an anticlockwise field next to each other. The Electromagnet uses this principal by having several individual loops magnetically joined together to produce a single coil.
Electromagnets are basically coils of wire which behave like bar magnets with a distinct north and south pole when an electrical current passes through the coil. The static magnetic field produced by each individual coil loop is summed with its neighbour with the combined magnetic field concentrated like the single wire loop we looked at in the last tutorial in the centre of the coil. The resultant static magnetic field with a north pole at one end and a south pole at the other is uniform and a lot more stronger in the centre of the coil than around the exterior.
In the last tutorial about Electromagnetism we saw that if we bend the conductor into a single loop the current will flow in opposite directions through the loop producing a clockwise field and an anticlockwise field next to each other. The Electromagnet uses this principal by having several individual loops magnetically joined together to produce a single coil.
Electromagnets are basically coils of wire which behave like bar magnets with a distinct north and south pole when an electrical current passes through the coil. The static magnetic field produced by each individual coil loop is summed with its neighbour with the combined magnetic field concentrated like the single wire loop we looked at in the last tutorial in the centre of the coil. The resultant static magnetic field with a north pole at one end and a south pole at the other is uniform and a lot more stronger in the centre of the coil than around the exterior.
Similar questions