Math, asked by SaikatNandi, 3 months ago

1-sin theta divided by 1+sin theta= (sec theta-tan theta) whole square​

Answers

Answered by itsbeasthk
1

Answer:

Solution in the above image...

____________________________________

Learn more from Brainly.in    { TRIGONOMETRY }

  • https://brainly.in/question/2685053
  • https://brainly.in/question/5745285
  • https://brainly.in/question/9567323
  • https://brainly.in/question/5797026
  • https://brainly.in/question/8211579

Attachments:
Answered by SugarCrash
43

Question :

Prove that :

\:\:\:\:\:\:\;\:\:\:\red\bigstar \large \sf \dfrac{1-sin\theta}{1+sin\theta} =( sec\theta - tan \theta )^2

Solution :

Solving L.H.S.

\large \implies \sf \dfrac{1-sin\theta}{1+sin\theta}

• To Solve this fraction we have to Rationalise.

• To Rationalise this fraction we have Multiply and divide this fraction by conjugate of its denominator.

So,

Denominator is 1 + sinθ and its conjugate will be 1-sinθ.

Now,

\large \implies \sf \displaystyle \dfrac{1-sin\theta}{1+sin\theta} \times \dfrac{1-sin\theta}{1-sin\theta}

\red\bigstar \boxed{(a+b)(a-b)= a^2-b^2 }

Applying this Identity here,

\large \implies \sf \dfrac{(1-sin\theta)^2}{1^2 -sin^2\theta}

we know that ,

• Sin²θ + cos²θ = 1

so,

cos²θ = 1-sin²θ

Using this Identity, we got :

\large \implies \sf (\dfrac{(1-sin\theta)}{cos \theta} )^2

Splitting

\large \implies \sf (\dfrac{1}{cos \theta}- \dfrac{sin \theta}{cos \theta} )^2

we know ,

  • Secθ = 1/cosθ
  • tanθ = sinθ/cosθ

So,

 \sf \large \implies ( sec\theta - tan \theta )^2

\huge  \underline{Hence \: \: proved }

{\fcolorbox{red}{blue}{\orange{\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\: SugarCrash\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:}}} 

Similar questions