Math, asked by meghana969696, 3 months ago

√1+sinA÷1-sinA = secA+tanA​

Answers

Answered by Anonymous
3

Answer:

correct question

I think my answer will help you

Attachments:
Answered by Anonymous
30

Answer:

Correct Question:

  • { \sf{ \sqrt{ \frac{1 + sinA}{1  -  sinA} } }} \\

Solution:

 : { \implies{ \sf{ \sqrt{ \frac{1 + sinA}{1  -  sinA} } }}} \\  \\  { \rm{Rationalizing  \: With  \: Denominator}} \\  \\   : { \implies{ \sf{{ \sqrt{ \frac{1 + \sin A}{1 - \sin A} \times \frac{1 + \sin A}{1 + \sin A}}}}}} \\  \\  : { \implies{ \sf{  \sqrt{ \frac{ {(1 + sinA)}^{2} }{ {(1)}^{2} -  {sin}^{2}  A} } }}} \\  \\  : { \implies{ \sf{ \sqrt{ \frac{ {(1 + sinA)}^{2} }{1 -  {sin}^{2} A} } }}} \\  \\ { \rm{ {sinA}^{2}  +  {cos}^{2}A = 1 }} \\ \therefore{ \rm{  {cos}^{2} A = 1 -  {sin}^{2}A }} \\  \\  : { \implies{ \sf{ \sqrt{ \frac{ {(1 + sinA)}^{2} }{ {cos}^{2}A } } }}} \\  \\ { \rm{square \: and \: root \: got \: cancelled}} \\  \\  : { \implies{ \sf{ \frac{1 + sinA}{cosA} }}} \\  \\  : { \implies{ \sf{ \frac{1 }{cosA} +  \frac{sin A}{cosA}  }}} \\  \\  : { \implies{ \sf{secA + tanA}}} \\  \\  \therefore{ \rm{Hence \:  Proved}}

Similar questions