Math, asked by sonamgupta6, 1 year ago

3 ^(x+2) = 243 , then find te value of 3^x+726

Answers

Answered by sonabrainly
3

3^under root n + 726

3^n+2 = 3^5

n+2 = 5

n = 5-2

n= 3

and 3under root n + 726 =

3 under root 3 + 726

= 3 under root 729

= 3*27

= 81


Answered by atul103
61
#ur Ans
__________

Given that

 =  >  \:  {3}^{(x + 2)}  = 243 \\  \\ now \: we \: can \: change \: into \\ same \: denominator \\  \\ factor \: of \: 243 \\  \\  =  > 243 = 3 \times 3 \times 3 \times 3 \times 3 \\  \\ now \\  \\  =  >  {3}^{(x + 2)}  =  {3}^{5}  \\  \\  =  > here \: base \: is \: same \: then \\ we \: can \: solve \: the \: power \: \\  value \\  \\  =  > x + 2 = 5 \\  =  > x = 5 - 2 \\  =  > x = 3 \\  \\    =  > now \: put \: the \: value \: of \: x \\  \\  =  >  {3}^{x}  + 726 \\  \\  =  >  {3}^{3}  + 726 \\  \\  =  > 27 + 726 \\  \\  =  > 753 \: ans


☺✌:-)

atul103: kaise*
atul103: ohhh... right
atul103: tum kaha se ho..
atul103: mgs mean?
atul103: ohh.. good ✌☺
Similar questions