Math, asked by mmann6701, 8 months ago

5 cosec 0 = 7. then evaluate sino + cos 0 - 1​

Answers

Answered by Anonymous
4

Answer:

 \bf \: cosec \:  \theta \:  =  \frac{7}{5}  =  \frac{hypotenuse }{opposite}

Need to find Adjecent side!

By Pythagoras theorem:

 \bf \: adjecent \:  \: side \:  \:  =  \sqrt{ {(hypotenuse \: side)}^{2}  -  {(opposite \:  \: side)}^{2} }  \\  \\  \bf \: adjecent \:  \: side \:  \:  = \sqrt{ {(7)}^{2} -  {(5)}^{2}  }  \\  \\  \bf \: adjecent \:  \: side \:  \:  = \sqrt{49  - 25}  \\  \\  \bf \: adjecent \:  \: side \:  \:  = \sqrt{24}  \\  \\  \bf \: adjecent \:  \: side \:  \:  = \sqrt{6 \times 4}  \\  \\  \bf \: adjecent \:  \: side \:  \:  =2 \sqrt{6}

We know that,

 \bf   \sin \theta =  \frac{opposite}{hypotenuse \: }  =  \frac{5}{7}  \\  \\  \bf \: cos \: \theta  =  \frac{adjecent \: }{hypotenuse}  =  \frac{2 \sqrt{6} }{7}

now,

 \bf \implies \: sin \:  \theta \:  + cos \:  \theta - 1 \\  \\ \bf \implies \: \frac{5}{7}  +  \frac{2 \sqrt{6} }{7}  - 1 \\  \\ \bf \implies \: \frac{7 \sqrt{6} }{7}  - 1 \\  \\ \bf \implies \: \frac{ \cancel7 \:  \sqrt{6} }{ \cancel7}  - 1 \\  \\ \bf \implies \: \sqrt{6}  - 1

Answered by Anonymous
0

Step-by-step explanation:

Answer:

\bf \: cosec \: \theta \: = \frac{7}{5} = \frac{hypotenuse }{opposite}cosecθ=

5

7

=

opposite

hypotenuse

Need to find Adjecent side!

By Pythagoras theorem:

\begin{gathered}\bf \: adjecent \: \: side \: \: = \sqrt{ {(hypotenuse \: side)}^{2} - {(opposite \: \: side)}^{2} } \\ \\ \bf \: adjecent \: \: side \: \: = \sqrt{ {(7)}^{2} - {(5)}^{2} } \\ \\ \bf \: adjecent \: \: side \: \: = \sqrt{49 - 25} \\ \\ \bf \: adjecent \: \: side \: \: = \sqrt{24} \\ \\ \bf \: adjecent \: \: side \: \: = \sqrt{6 \times 4} \\ \\ \bf \: adjecent \: \: side \: \: =2 \sqrt{6}\end{gathered}

adjecentside=

(hypotenuseside)

2

−(oppositeside)

2

adjecentside=

(7)

2

−(5)

2

adjecentside=

49−25

adjecentside=

24

adjecentside=

6×4

adjecentside=2

6

We know that,

\begin{gathered}\bf \sin \theta = \frac{opposite}{hypotenuse \: } = \frac{5}{7} \\ \\ \bf \: cos \: \theta = \frac{adjecent \: }{hypotenuse} = \frac{2 \sqrt{6} }{7}\end{gathered}

sinθ=

hypotenuse

opposite

=

7

5

cosθ=

hypotenuse

adjecent

=

7

2

6

now,

\begin{gathered}\bf \implies \: sin \: \theta \: + cos \: \theta - 1 \\ \\ \bf \implies \: \frac{5}{7} + \frac{2 \sqrt{6} }{7} - 1 \\ \\ \bf \implies \: \frac{7 \sqrt{6} }{7} - 1 \\ \\ \bf \implies \: \frac{ \cancel7 \: \sqrt{6} }{ \cancel7} - 1 \\ \\ \bf \implies \: \sqrt{6} - 1\end{gathered}

⟹sinθ+cosθ−1

7

5

+

7

2

6

−1

7

7

6

−1

7

7

6

−1

6

−1

Similar questions