5 cosec 0 = 7. then evaluate sino + cos 0 - 1
Answers
Answer:
Need to find Adjecent side!
By Pythagoras theorem:
We know that,
now,
Step-by-step explanation:
Answer:
\bf \: cosec \: \theta \: = \frac{7}{5} = \frac{hypotenuse }{opposite}cosecθ=
5
7
=
opposite
hypotenuse
Need to find Adjecent side!
By Pythagoras theorem:
\begin{gathered}\bf \: adjecent \: \: side \: \: = \sqrt{ {(hypotenuse \: side)}^{2} - {(opposite \: \: side)}^{2} } \\ \\ \bf \: adjecent \: \: side \: \: = \sqrt{ {(7)}^{2} - {(5)}^{2} } \\ \\ \bf \: adjecent \: \: side \: \: = \sqrt{49 - 25} \\ \\ \bf \: adjecent \: \: side \: \: = \sqrt{24} \\ \\ \bf \: adjecent \: \: side \: \: = \sqrt{6 \times 4} \\ \\ \bf \: adjecent \: \: side \: \: =2 \sqrt{6}\end{gathered}
adjecentside=
(hypotenuseside)
2
−(oppositeside)
2
adjecentside=
(7)
2
−(5)
2
adjecentside=
49−25
adjecentside=
24
adjecentside=
6×4
adjecentside=2
6
We know that,
\begin{gathered}\bf \sin \theta = \frac{opposite}{hypotenuse \: } = \frac{5}{7} \\ \\ \bf \: cos \: \theta = \frac{adjecent \: }{hypotenuse} = \frac{2 \sqrt{6} }{7}\end{gathered}
sinθ=
hypotenuse
opposite
=
7
5
cosθ=
hypotenuse
adjecent
=
7
2
6
now,
\begin{gathered}\bf \implies \: sin \: \theta \: + cos \: \theta - 1 \\ \\ \bf \implies \: \frac{5}{7} + \frac{2 \sqrt{6} }{7} - 1 \\ \\ \bf \implies \: \frac{7 \sqrt{6} }{7} - 1 \\ \\ \bf \implies \: \frac{ \cancel7 \: \sqrt{6} }{ \cancel7} - 1 \\ \\ \bf \implies \: \sqrt{6} - 1\end{gathered}
⟹sinθ+cosθ−1
⟹
7
5
+
7
2
6
−1
⟹
7
7
6
−1
⟹
7
7
6
−1
⟹
6
−1