Math, asked by sourabhdas479, 1 year ago

5 solve the following simultaneous equations: 3x-4y=10; 4x+3y=5

Answers

Answered by Anonymous
33

Answer:


Step-by-step explanation:

friend


here is your answer


===========================


let,


3x-4y = 10 ----------> {1}


4x+3y = 5 ------------> {2}


{1} × 3 = 9x - 12y = 30


{2} ×4 = 16x + 12y = 20

====================

= 25x = 50


x = 50/25


x = 2


therefore , x = 2


now place x in eq 1


(3×2) - 4y = 10


6 - 4y = 10


-4y = 4


y = (-1)



sho ,


x = 2

y = (-1)



i hope it helped uh !!


thanks




Sufiyan07: ok
afrin4495: thx a lot
Answered by Anonymous
1

Step-by-step explanation:

AnswEr:

\large\bold{\underline{\sf{Given\: Equation -}}}

• 3x - 4y = 10

• 4x + 3y = 5

\rule{150}2

3x - 4y = 10 ....[Equation 1]

4x + 3y = 5 ....[Equation 2]

\:\:\:\small\bold{\underline{\sf{\pink{Multiplying\: Equation\;(1)\;by \:3 \:\&\; Equation\;(2)\:by \; 4}}}}

\implies (3x - 4y = 10) × 3

\implies 9x - 12y = 30 .....[Equation 4]

\implies (4x + 3y = 5) × 4

\implies 16x + 12y = 20 .....[Equation 5]

\rule{150}2

\:\;\small\bold{\underline{\underline{\sf{\pink{Now,\:From \; Equations \;(3) \;\&\;(4)}}}}}

\implies\sf 9x -12y = 30

\implies\sf 16x + 12y = 20

\implies\sf   25x = 50

\implies\sf x =\cancel\dfrac{50}{25}

\implies\boxed{\sf{x\:=\:2}}

Substituting the Value of x in Equation 1

\implies\sf 3x - 4y = 10

\implies\sf 3(2) - 4y = 10

\implies\sf  6 - 4y = 10

\implies\sf 4y = 6 - 10

\implies\sf 4y = -4

\implies\sf y = \cancel\dfrac{-4}{4}

\implies\boxed{\sf{y\:=\:-1}}

Hence, The Value of x is 2 & Value of y is -1.

Similar questions