Math, asked by harneksingh01887, 7 months ago

7. The value of x for the minimum
value of √3 cos x +sin x is​

Answers

Answered by RvChaudharY50
5

Question :- The value of x for the minimum value of (√3 cos x +sin x) is ?

Solution :-

→ (√3 cos x +sin x)

Multiply and divide the equation by 2, we get,

→ (2/2)(√3 cos x +sin x)

Taking (1/2) inside now,

→ 2(√3/2 * cos x + 1/2 * sin x)

Putting :-

  • √3/2 = cos 30°
  • √3/2 = cos 30° 1/2 = sin 30°

→ 2(cos x * cos 30° + sin x * sin 30°.)

Now using :-

  • cosA * cosB + sinA * sinB = cos(A - B)

→ 2 * cos( x - 30°)

Now, we know that,

  • Minimum value of cos θ is (-1) when θ = 180 ˚.

So, 2 * cos( x - 30°) will be minimum when cos(x - 30°) is equal to (-1).

Therefore,

→ cos(x - 30°) = cos180°

→ x - 30° = 180°

x = 210°. (Ans.)

Hence, the value of x will be 210°.

Answered by pulakmath007
13

\displaystyle\huge\red{\underline{\underline{Solution}}}

 \sf{Let \:  \:  f(x) =  \sqrt{3}  \cos x +  \sin x \:  \: }

Differentiating both sides with respect to x two times

 \sf{ {f}  \: {'}(x) =   - \sqrt{3}  \sin x +  \cos x \:  \: }

 \sf{ {f}  \: {''}(x) =  - ( \sqrt{3}  \cos x +  \sin x \:)  \: }

For extremum value of f(x) we have

 \sf{ {f}  \: {'}(x) =  0\: }

 \implies \:  \sf{  - \sqrt{3}  \sin x +  \cos x \:  = 0 \: }

 \implies \:  \sf{  \sqrt{3}  \sin x  =  \cos x \: \: }

 \implies \:  \sf{ \cot x \:  =  \sqrt{3} \: }

 \implies \:  \sf{ x = \:  {30}^{ \circ} ,  {210}^{ \circ}\: }

Now

 \sf{ {f}  \: {''}( {30}^{ \circ} ) =  - ( \sqrt{3}  \cos {30}^{ \circ}+  \sin {30}^{ \circ} \:)  =  - 2 < 0 \: }

So f(x) has a maximum value at x = 30°

Again

 \sf{ {f}  \: {''}( {210}^{ \circ} ) =  - ( \sqrt{3}  \cos {210}^{ \circ}+  \sin {210}^{ \circ} \:)  =   2  >  0 \: }

So f(x) has a minimum value at x = 210°

The minimum value is

 \sf{ {f}( {210}^{ \circ} ) =   ( \sqrt{3}  \cos {210}^{ \circ}+  \sin {210}^{ \circ} \:)  =    - 2   \: }

RESULT

For √3 cos x +sin x the minimum value occurs at x = 210° and the minimum value is - 2

Similar questions