8. If tan A = ¾ then show that sin A cos A =12/25.
Answers
tan A = ¾
We know, tan A = perpendicular/ base So, tan A = 3k/4k
Where, Perpendicular = 3k Base = 4k Using Pythagoras Theorem, (hypotenuse)2 = (perpendicular)2 + (base)2
(hypotenuse)2 = (3k)2+ (4k)2 = 9k2+16k2 = 25k2 hypotenuse = 5k
To find sin A and cos A,
sinA = 3/5
cosA= 4/5
then sinAcosA = 3/5×4/5
= 12/25
GIVEN:
tanA=3/4
TO PROVE:
sinA.cosA = 12/25
we know that:
tanA = perpendicular/base
so, tanA = 3k/4k
where perpendicular=3k and base=4k
USING PYTHAGORAS THEOREM:
hypotenuse^2 = perpendicular^2 + base^2
hypotenuse^2 = (3k)^2 + (4k)^2
=9k^2 + 16k^2
=25k^2
hypotenuse = 5k
TO FIND SINA AND COSA:
sinA = perpendicular/hypotenuse = 3k/5k = 3/5
cosA = base/ hypotenuse = 4k/5k = 4/5
➡multiply sinA and cosA
3/5 ×4/5 = 12/25
HENCE,PROVED