Physics, asked by malllokesh6805, 11 months ago

A cylindrical steel wire of 3 m length is to stretch no more than 0.2 cm When a tensile force of 400 N is applied to each end of the wire ? What minimum diameter is required for the wire ?? Y_(steel) = 2.1xx10^(11) N//m^2

Answers

Answered by abdul9838
0

<b> <body \: bgcolor = "yellow">

 \bf \red{hey \: mate \: here \: is \: answer} \\  \\  \bf  \red{according \: to \: question} \\  \\  \\ \bf  \red{length(l) = 3m} \\  \\ \bf  \red{change \: in \: length  \: (\delta \: l) = 0.2cm =   } \\ \bf  \red{0.2 \times  {10}^{ - 2}m } \\  \\  \bf  \red{force(f) = 400 \: n} \\  \\ \bf  \red{  y =2.1 \times  {10}^{11}   n \: per \:  {s}^{2} } \\  \bf  \red{we \: have \: to \: find \: diameter} \\  \\ \bf  \red{using \: this \: formula} \\  \\  \\ \bf  \red{y =  \frac{force \times length}{area \times  change \: in \: length} } \\  \\ \bf  \red{y =  \frac{f \times  \: l}{a \times  \delta \: l} } \\  \\ \bf  \red{2.1 \times  {10}^{11}  =  \frac{400 \times 3}{\pi \:  {r}^{2}  \times 0.2 {10}^{ - 2} } }

r=√(1/110×10^4

r=1/1000 approx

r=1. 0×10^-3

As we know that

Radius =Diameter/2

Diameter=2×radius

Diameter=2×10^-3

Answered by Fatimakincsem
0

Thus the diameter of the wire is d = 1.91 mm

Explanation:

Given data:

  • length "l" = 3 m
  • Δl = 0.2 cm = 0.2 x 10^-2 m
  • F = 400 N
  • Y(steel) = 2.1 x 10^(11) N//m^2
  • diameter "d" =?

Solution:

Δl = Fl / A Y

A = Fl / Δl Y

π / 4 . d^2 = 400 x 3 / 0.2 x 10^-2 x  2.1 x 10^11

d = √400 x 3 x 4 / 0.2 x 10^-2 x 2.1 x 10^11 x π

d = 1.91 x 10^-3 m

d = 1.91 mm

Thus the diameter of the wire is d = 1.91 mm

Similar questions