Atoy is in the form of a cone mounted on a hemisphere of the same diameter. The diameter
of the base and the height of the cone are 6 cm and 4 cm respectively. Determine the
surface area of the toy. [use pi = 3.14]
Answers
Answer:
Given :
For cone -
1. Height of the cone = 4cm
2. diameter of the cone = 6cm
3.radius of the cone = \frac{6}{2}
2
6
= 3cm
Slant height of the cone l = √r²+h²
⇒ l = √3²+4²
⇒ l = √9+16
⇒ l = 5
Lateral surface area of the cone = πrl
⇒ 3.14 × 3 × 5
⇒ 3.14 × 15
⇒ 47,10 cm²
For Hemisphere -
1. Diameter of the hemisphere = 6cm
2. Radius of hemisphere = \frac{6}{2}
2
6
= 3cm
Lateral surface area of hemisphere = 2πr²
⇒ 2 × 3.14 × 3²
⇒ 2 × 3.14 × 9
⇒ 18 × 3.14
⇒ 56.52 cm²
The surface are of toy = lateral surface area of cone + lateral surface area of hemisphere
⇒ 47.10 + 56.52
⇒ 103.62cm³
∴ The total surface area of toy = 103.62cm³
Answer:
Given :
For cone -
1. Height of the cone = 4cm
2. diameter of the cone = 6cm
3.radius of the cone = = 3cm
Slant height of the cone l = √r²+h²
⇒ l = √3²+4²
⇒ l = √9+16
⇒ l = 5
Lateral surface area of the cone = πrl
⇒ 3.14 × 3 × 5
⇒ 3.14 × 15
⇒ 47,10 cm²
For Hemisphere -
1. Diameter of the hemisphere = 6cm
2. Radius of hemisphere = = 3cm
Lateral surface area of hemisphere = 2πr²
⇒ 2 × 3.14 × 3²
⇒ 2 × 3.14 × 9
⇒ 18 × 3.14
⇒ 56.52 cm²
The surface are of toy = lateral surface area of cone + lateral surface area of hemisphere
⇒ 47.10 + 56.52
⇒ 103.62cm³
∴ The total surface area of toy = 103.62cm³