Cos A minus Sin A + one upon Cos A + Sin A minus 1 is equal to cosec A + cot a using the identity Kaushik square is equal to one plus cot squared
Answers
Answered by
275
here is ur answer
hope u understand it .....
Attachments:
Answered by
185
Answer:
Step-by-step explanation:
we have to prove ( cosA - sinA + 1 ) / ( cosA + sinA - 1 ) = cosecA + cotA
left hand side = ( cosA - sinA + 1 ) / ( cosA + sinA - 1 )
= [ sinA (cosA-sinA+1) ] / [ sinA (cosA+sinA-1) ]
= ( sinA cosA - sin²A + sinA ) / sinA ( cosA + sinA - 1 )
= [ sinA cosA + sinA - ( 1 - cos²A ) ] / sinA ( cosA + sinA - 1 )
= [ sinA (cosA+1) - (1-cosA) (1+cosA) ] / sinA (cosA+sinA-1)
= [(1+cosA) (sinA+cosA-1) ] / sinA (cosA+sinA-1)
= ( 1 + cosA ) / sinA
= ( 1/sinA) + (cosA/sinA)
= cosecA + cot A
then (cosA - sinA + 1 ) / ( cosA + sinA - 1 ) = cosecA + cotA (proved)
Similar questions