Math, asked by ssukhpal5838, 11 months ago

cot^{-1} [ \frac{\sqrt{1}+sin x +\sqrt{1}-sinx}{\sqrt{1}+sin x - \sqrt{1}-sin x} ] , 0

Answers

Answered by amitnrw
0

dy/dx = 1/2

Step-by-step explanation:

y = Cot^{-1} [ \frac{\sqrt{1}+sin x +\sqrt{1}-sinx}{\sqrt{1}+sin x - \sqrt{1}-sin x} ]

\frac{\sqrt{1}+sin x +\sqrt{1}-sinx}{\sqrt{1}+sin x - \sqrt{1}-sin x}

= \frac{\sqrt{1}+sin x +\sqrt{1}-sinx}{\sqrt{1}+sin x - \sqrt{1}-sin x}  \times  \frac{\sqrt{1}+sin x +\sqrt{1}-sinx}{\sqrt{1}+sin x + \sqrt{1}-sin x}

= (1  + sinx  + 1 - Sinx  + 2√(1 - Sin²x) / ( 1 + Sinx  - (1 - Sinx))

= (2  + 2√(1 - Sin²x) / (2Sinx)

= (1  + Cosx)/(Sinx)

=  2Cos²(x/2) / (2 Sin(x/2)Cos(x/2)

= Cot(x/2)

y =Cot⁻¹(Cot(x/2)

y = x/2

y = x/2

dy/dx = 1/2

और अधिक जानें :

(x + 3)^{2} .(x + 4)^{3} .(x + 5)^{4} प्रदत्त फलनों का x के सापेक्ष अवकलन कीजिए

brainly.in/question/15287089

f(x) = (1 + x) (1 + x^{2}) (1 + x^{4}) (1 + x^{8}) द्वारा प्रदत्त फलन का अवकलज ज्ञात कीजिए और इस प्रकार f'(1) ज्ञात कीजिए।

brainly.in/question/15287093

Similar questions