மதிப்புகளைக் காண்க
cotθ/tan(90°-θ) + (cot(90°-θ)tanθ•sec(90°-θ))/(sin(90°-θ)cot(90°-θ)•csc(90°-θ) )
Answers
Answered by
0
tan (90- theeta) = cot theeta
sec (90- theeta) = cosec theeta
sin ( 90- theeta) = cos theeta
opposite is also possible
ANSWER
when we apply all this we get
1+ 1/ cos theeta
Answered by
0
cotθ/tan(90°-θ) + (cot(90°-θ)tanθ•sec(90°-θ))/(sin(90°-θ)cot(90°-θ)•csc(90°-θ) ) :
tan( -θ ) = cotθ, cos( - θ = sinθ)
sin (- θ) = cosθ, cot (- θ = tanθ)
cosec ( - θ) = secθ, sec ( - θ = tan θ)
cosec ( - θ) = sec θ, sec (- θ = cosec θ)
∴ cot θ / tan( - θ) + cot( - θ) tan θ sec ( θ) / sin ( - θ) cot ( - θ) cosec ( - θ)
= cot θ /cot θ + sin θ tan θ cosec θ / cos θ tan θ sec θ
= 1 + sinθ. 1 / sin θ / cosθ. 1 / cosθ
= 1 + 1
=2
∴ cosecθ = 1/sinθ secθ
= 1 / cosθ
Similar questions