Evaluate cos² - sin²
Answers
Answered by
27
cos²112 1/2° - sin²52 1/2°
use algebraic formula, a² - b² = (a - b)(a + b)
= (cos112 1/2° - sin52 1/2°)(cos112 1/2° + sin52 1/2°)
now, sin52 1/2° = sin(90° - 37 1/2°) = cos37 1/2°
= (cos112 1/2° - cos37 1/2°)(cos112 1/2° + cos37 1/2°)
use formula, cosC - cosD = 2sin(C + D)/2.sin(D - C)/2
cosC + cosD = 2cos(C + D)/2 cos(C - D)/2
= [2sin(75°) sin(-37 1/2°) ] [2cos(75°) cos(37 1/2°)]
= -[2sin75° cos75° ] [2sin(37 1/2°) cos(37 1/2°)]
use formula, sin2x = 2sinx cosx
= - [sin150° ] [sin75° ]
= - [ sin(180° - 30°) ] [ sin(45° + 30°) ]
= - sin30° × [sin45° cos30° + cos45° sin30° ]
= -1/2 × (√3 + 1)/2√2
= - (√3 + 1)/4√2
use algebraic formula, a² - b² = (a - b)(a + b)
= (cos112 1/2° - sin52 1/2°)(cos112 1/2° + sin52 1/2°)
now, sin52 1/2° = sin(90° - 37 1/2°) = cos37 1/2°
= (cos112 1/2° - cos37 1/2°)(cos112 1/2° + cos37 1/2°)
use formula, cosC - cosD = 2sin(C + D)/2.sin(D - C)/2
cosC + cosD = 2cos(C + D)/2 cos(C - D)/2
= [2sin(75°) sin(-37 1/2°) ] [2cos(75°) cos(37 1/2°)]
= -[2sin75° cos75° ] [2sin(37 1/2°) cos(37 1/2°)]
use formula, sin2x = 2sinx cosx
= - [sin150° ] [sin75° ]
= - [ sin(180° - 30°) ] [ sin(45° + 30°) ]
= - sin30° × [sin45° cos30° + cos45° sin30° ]
= -1/2 × (√3 + 1)/2√2
= - (√3 + 1)/4√2
Answered by
17
HELLO DEAR,
cos²112 1/2° - sin²52 1/2°
[as, a² - b² = (a - b)(a + b) ]
=> (cos112 1/2° - sin52 1/2°)(cos112 1/2° + sin52 1/2°)
now,
sin52 1/2° = sin(90° - 37 1/2°) = cos37 1/2°
=> (cos112 1/2° - cos37 1/2°)(cos112 1/2° + cos37 1/2°)
[as, cosC - cosD = 2sin(C + D)/2.sin(D - C)/2
cosC + cosD = 2cos(C + D)/2 cos(C - D)/2 ]
=> [2sin(75°) sin(-37 1/2°) ] [2cos(75°) cos(37 1/2°)]
=> -[2sin75° cos75° ] [2sin(37 1/2°) cos(37 1/2°)]
[as, sin2x = 2sinx cosx ]
=> - [sin150° ] [sin75° ]
=> - [ sin(180° - 30°) ] [ sin(45° + 30°) ]
=> - sin30° * [sin45° cos30° + cos45° sin30° ]
=> -1/2 * (√3 + 1)/2√2
=> - (√3 + 1)/4√2
I HOPE IT'S HELP YOU DEAR,
THANKS
cos²112 1/2° - sin²52 1/2°
[as, a² - b² = (a - b)(a + b) ]
=> (cos112 1/2° - sin52 1/2°)(cos112 1/2° + sin52 1/2°)
now,
sin52 1/2° = sin(90° - 37 1/2°) = cos37 1/2°
=> (cos112 1/2° - cos37 1/2°)(cos112 1/2° + cos37 1/2°)
[as, cosC - cosD = 2sin(C + D)/2.sin(D - C)/2
cosC + cosD = 2cos(C + D)/2 cos(C - D)/2 ]
=> [2sin(75°) sin(-37 1/2°) ] [2cos(75°) cos(37 1/2°)]
=> -[2sin75° cos75° ] [2sin(37 1/2°) cos(37 1/2°)]
[as, sin2x = 2sinx cosx ]
=> - [sin150° ] [sin75° ]
=> - [ sin(180° - 30°) ] [ sin(45° + 30°) ]
=> - sin30° * [sin45° cos30° + cos45° sin30° ]
=> -1/2 * (√3 + 1)/2√2
=> - (√3 + 1)/4√2
I HOPE IT'S HELP YOU DEAR,
THANKS
Similar questions