Evaluate cos² - sin²
Answers
Answered by
4
cos²52 1/2° - sin²22 1/2°
use algebraic formula, a² - b² = (a - b)(a + b)
= (cos52 1/2° - sin22 1/2°)(cos52 1/2° + sin22 1/2°)
now, sin22 1/2° = sin(90° - 67 1/2°) = cos67 1/2°
= (cos52 1/2° - cos67 1/2°)(cos52 1/2° + cos67 1/2°)
use formula, cosC - cosD = 2sin(C + D)/2.sin(D - C)/2
cosC + cosD = 2cos(C + D)/2 cos(C - D)/2
= [2sin(60°) sin(7 1/2°) ] [2cos(60°) cos(7 1/2°)]
= [2sin60° cos60° ] [2sin(7 1/2°) cos(7 1/2°)]
use formula, sin2x = 2sinx cosx
= [sin120° ] [sin15° ]
= [ sin(180° - 60°) ] [ sin(45° - 30°)
= sin60° [ sin45° cos30° - cos45° sin30° ]
= √3/2 × (√3 - 1)/2√2
= (3 - √3)/4√2
use algebraic formula, a² - b² = (a - b)(a + b)
= (cos52 1/2° - sin22 1/2°)(cos52 1/2° + sin22 1/2°)
now, sin22 1/2° = sin(90° - 67 1/2°) = cos67 1/2°
= (cos52 1/2° - cos67 1/2°)(cos52 1/2° + cos67 1/2°)
use formula, cosC - cosD = 2sin(C + D)/2.sin(D - C)/2
cosC + cosD = 2cos(C + D)/2 cos(C - D)/2
= [2sin(60°) sin(7 1/2°) ] [2cos(60°) cos(7 1/2°)]
= [2sin60° cos60° ] [2sin(7 1/2°) cos(7 1/2°)]
use formula, sin2x = 2sinx cosx
= [sin120° ] [sin15° ]
= [ sin(180° - 60°) ] [ sin(45° - 30°)
= sin60° [ sin45° cos30° - cos45° sin30° ]
= √3/2 × (√3 - 1)/2√2
= (3 - √3)/4√2
Answered by
3
HELLO DEAR,
cos²52 1/2° - sin²22 1/2°
[as, a² - b² = (a - b)(a + b) ]
=> (cos52 1/2° - sin22 1/2°)(cos52 1/2° + sin22 1/2°)
now, sin22 1/2° = sin(90° - 67 1/2°) = cos67 1/2°
=> (cos52 1/2° - cos67 1/2°)(cos52 1/2° + cos67 1/2°)
[as, cosC - cosD = 2sin(C + D)/2.sin(D - C)/2
cosC + cosD = 2cos(C + D)/2 cos(C - D)/2 ]
=> [2sin(60°) sin(7 1/2°) ] [2cos(60°) cos(7 1/2°)]
=> [2sin60° cos60° ] [2sin(7 1/2°) cos(7 1/2°)]
[as, sin2x = 2sinx cosx ]
=> [sin120° ] [sin15° ]
=> [ sin(180° - 60°) ] [ sin(45° - 30°)
=> sin60° [as, sin45° cos30° - cos45° sin30° ]
=> √3/2 × (√3 - 1)/2√2
=> (3 - √3)/4√2
I HOPE IT'S HELP YOU DEAR,
THANKS
cos²52 1/2° - sin²22 1/2°
[as, a² - b² = (a - b)(a + b) ]
=> (cos52 1/2° - sin22 1/2°)(cos52 1/2° + sin22 1/2°)
now, sin22 1/2° = sin(90° - 67 1/2°) = cos67 1/2°
=> (cos52 1/2° - cos67 1/2°)(cos52 1/2° + cos67 1/2°)
[as, cosC - cosD = 2sin(C + D)/2.sin(D - C)/2
cosC + cosD = 2cos(C + D)/2 cos(C - D)/2 ]
=> [2sin(60°) sin(7 1/2°) ] [2cos(60°) cos(7 1/2°)]
=> [2sin60° cos60° ] [2sin(7 1/2°) cos(7 1/2°)]
[as, sin2x = 2sinx cosx ]
=> [sin120° ] [sin15° ]
=> [ sin(180° - 60°) ] [ sin(45° - 30°)
=> sin60° [as, sin45° cos30° - cos45° sin30° ]
=> √3/2 × (√3 - 1)/2√2
=> (3 - √3)/4√2
I HOPE IT'S HELP YOU DEAR,
THANKS
Similar questions