Math, asked by Anonymous, 4 months ago

Evaluate:
lim_{x \to \infty }\sqrt{x} \: ( \sqrt{x + c} -  \sqrt{x}   )

Answers

Answered by SrijanShrivastava
4

  \\  \sf \lim_{x \to \infty } \sqrt{x} ( \sqrt{x + c}   -  \sqrt{x} )\equiv (\infin -\infin)

 \\ =\sf  \lim _{x \to \infty }  \  \sqrt{x( \sqrt{x + c}  -  \sqrt{x} ) ^{2}  }

Upon Rationalising the Denominator of the Numerator to form a complex fraction

  = \sf   \sqrt{ \lim_{x \to \infty } \frac{ {c}^{2} x}{( \sqrt{x + c} +  \sqrt{x} )  ^{2} } }

 \\ = \sf  \sqrt{\frac{ {c}^{2} }{ \lim_{x \to \infty }(1 +  \frac{ \sqrt{x + c} }{  \sqrt{x} } ) {}^{2} }   }

 =\sf  \frac{ c}{(1 +  \sqrt{ \lim_{x \to \infty }( 1 + \frac{  c}{x} )} ) }

 \\ \implies \boxed{  \sf \lim_{x \to \infty } \sqrt{x} ( \sqrt{x + c}   -  \sqrt{x} )  = \frac{c}{2} }

Similar questions