EXPRESS THE FOLLOWING AS SUM OR DIFFERENCE OF TRIGONOMETRIC RATIOS (i) 2sin32°.cos28° (ii) 2cos 78°.sin42° (iii) 2cos 54°.sin66°
pls answer it correctly,fastly and fully then I will definitely make u as a brainlest
Answers
Answered by
12
Step-by-step explanation:
(1)Given that :-2sin32°.cos28°
We know that
Sin(A+B)+Sin(A-B)= 2 SinA CosB
=>2sin32°.cos28°
Here, A =32° and B=28°
=>Sin(32°+28°)+Sin(32°-28°)
=>Sin60°+Sin4°(or)
=>√3/2+sin4°
(2)2cos 78°.sin42°
We know that:-
Sin(A+B)-Sin(A-B)=2CosASinB
now , 2Cos 78° Sin42°
here, A=78° and B=42°
=>Sin(78°+42°)-Sin(78°-42°)
=>Sin120°-Sin36° ( or)
=>Sin(90+30)-Sin36°
=>Cos30°-Sin36°
=>√3/2-Sin36°. (sin(90+A)=cosA)
(3)2Cos54°Sin66°=2Sin66°Cos54°
We know that:-
Sin(A+B)+Sin(A-B)= 2SinACosB
Here, A=66° and B =54°
now,
=>2Cos 54° Sin66°
=>2Sin66°Cos54°
=>Sin(66°+54°)+Sin(66°-54°)
=>Sin120°+Sin12° (or)
=>Sin(90°+30°)+Sin12°
=>Cos30°+Sin12° (or)
=>√3/2 + Sin12°. (Sin(90+A)=CosA)
Answered by
1
Answer:
niceeeee..... tennetiraj86
Similar questions