Math, asked by vishal622, 1 year ago

factorise 27p³ -1/216 - 9p²/2+ 1p/4

Answers

Answered by shivamthapa820p5ijfy
3
27p³(4q-2r)³+64q³(2r-3p)³+8r³(3p-4q)³ =27p³(64q³-3.16q².2r+3.4q.4r²-8r³)+64q³(8r³-3.4r².3p+3.2r.9p²-27p³)+8r³(27p³ -3.9p².4q+3.3p.16q²-64q³) =1728p³q³-2592p³q²r+1296p³qr²-216p³r³+512q³r³-2304pq³r²+3456p²q³r1728p³q³+216p³r³-864p²qr³+1152pq²r³-512q³r³ =1296p³qr²+3456p²q³r+1152pq²r³-2592p³q²r-2304pq³r²-864p²qr³ =48pqr(27p²r+72pq²+24qr²-54p²q-48q²r-18pr²)
=48pqr[(27p²r-18pr²)+(24qr²-54p²q)+(72pq²-48q²r)]
=48pqr[9pr(3p-2r)-6q(9p²-4r²)+24q²(3p-2r)] =48pqr[9pr(3p-2r)-6q(3p+2r)(3p-2r)+24q²(3p-2r)]
=48pqr(3p-2r)[9pr-6q(3p+2r)+24q²]

Factirize 27p 3 (4q 2r) 3 +64q 3 (2r-3p) 3 +8r 3 (3p-4q) 3
=48pqr(3p-2r)(9pr-18pq-12qr+24q²)
=48pqr(3p-2r)[9p(r-2q)-12q(r-2q)]
=48pqr(3p-2r)(r-2q)(9p-12q)
=48pqr{3(3p-4q)}(3p-2r)(r-2q)
=144pqr(3p-4q)(3p-2r)(r-2q)
Answered by Salmonpanna2022
2

Step-by-step explanation:

Given:-

 \tt{27 {p}^{3}  -  \frac{1}{216}  -  \frac{9}{2}  {p}^{2}  +  \frac{1}{4} p} \\  \\

What to do:-

To Factorise the expression.

Solution:-

Let's solve the problem,

We have,

 \tt{27 {p}^{3}  -  \frac{1}{216}  -  \frac{9}{2}  {p}^{2}  +  \frac{1}{4} p} \\  \\

⟹ \tt{(3p {)}^{2}  -  \bigg( \frac{1}{6}  \bigg )^{2}  -  \frac{3}{2} p \bigg(3p -  \frac{1}{6}  \bigg) }\\  \\

⟹  \tt{\bigg(3p -  \frac{1}{6 }\bigg)\left\{(3p {)}^{2} + 3p \times   \frac{1}{6}  +  \bigg({ \frac{1}{6} \bigg)^{2}  }\right\} -  \frac{3}{2} p \bigg(3p -  \frac{1}{6}  \bigg) }\\  \\ </p><p>

⟹  \tt{\bigg(3p -  \frac{1}{6}  \bigg) \bigg(9 {p}^{2}  + p \times  \frac{1}{2}  +  \frac{1}{36}  \bigg) -  \frac{3}{2} p \bigg(3p -  \frac{1}{6}  \bigg) }\\  \\

⟹  \tt{\bigg(3p -  \frac{1}{6}  \bigg) \bigg(9 {p}^{2}  +  \frac{p}{2}  +  \frac{1}{36}  -  \frac{3}{2} p \bigg)} \\  \\

⟹  \tt{\bigg(3p -  \frac{1}{6}  \bigg) \bigg(9 {p}^{2}  - p +  \frac{1}{36}  \bigg)} \\  \\

⟹  \tt{\bigg(3p -  \frac{1}{6}  \bigg) \left \{(3p {)}^{2} - 2 \times 3p \times  \frac{1}{6}   +  \bigg( \frac{1}{6}   \bigg)^{2} \right \} }\\  \\

⟹  \tt{\bigg(3p -  \frac{1}{6}  \bigg) \bigg(3p -  \frac{1}{6}  \bigg )^{2} } \\  \\

⟹  \tt{\bigg(3p -  \frac{1}{6}  \bigg) \bigg(3p -  \frac{1}{6}  \bigg) \bigg(3p -  \frac{1}{6}  \bigg) } \:  \:  \red{Ans}.\\  \\

I hope it's help you...☺

Similar questions